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Abstract—Many electric circuits feature some type of non-

linearity of their used devices. Non-linear resistors or inductors 

could be typical examples. Also, all semiconductor devices are 

in their nature non-linear ones. From the point of view of the 

circuit solution they are presented non-linear static and 

dynamical system described by differential equations. 

Particularly, in steady state, it could be system of non-linear 

algebraic equations.  

 
Index Terms—Fictitious function, state variables, non-linear 

dependency.  

I. INTRODUCTION 

Many electric circuits feature some type of non-linearity 

of their used devices. Non-linear resistors or inductors could 

be typical examples. Also, all semiconductor devices are in 

their nature non-linear ones. From the point of view of the 

circuit solution they are presented by non-linear static and 

dynamical system described by differential equations. 

Particularly, in steady state, it could be system of non-linear 

algebraic equations. 

II. NON-LINEAR STATIC SYSTEMS 

Let’s assume electric circuit in Fig. 1 considering steady 

state when capacitor current iCD is equal zero. 

 
Fig. 1.  Electric circuit with serial rectifier diode with non-linear static I-V 

characteristic. 

General solution of the non-linear static system described 

in compact form as 

 � = ����.     (1) 
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It is possible using iterative methods. Then one-step 

stationary iterative method yields 

 ���	 = �����.          (2) 

Numerical solution of non-linear algebraic equation 

system can be done by Newton-Raphson method using two 

members of Taylor expansion and Jacobi matrix 

 
��� = 
������ + 

 ������. �� − ����� + ⋯,   (3) 

where  

 ��� is Jacobian matrix of n-dimensional function at 

point ���� [1], [2], [5] 

 

 ��� = �∂��
∂�� … ∂��

∂��
∂��
∂�� … ∂��

∂��
�	.	 (4) 

The simplest method of circuit solution is graphical one. 

According to electrical scheme in Fig. 1 and assuming diode 

can be modelled as a voltage controlled current source in the 

forward characteristics one can write 

 �� = ���exp�#. $�� − 1&,   (5) 

where # = '()*+ ,	-., /0– charge of electron 1.59⋅10
-19

 [C]; M 

– idealist or emission factor (typically varies from 1.02 to 

1.6); K – Boltzmann constant 1.38⋅10
-23

 [J/K]; #	– PN 

junction temperature [K]; �1 – saturation current in reverse 

direction and $2 – voltage of diode. 

Applying Kirchhoff law we obtain 

 3���exp�#$�� − 1& + $� − 4 = 0,      (6) 

where 7�$�� = 4 − 	3���exp�#$�� − 1& and for one-step 

stationary iterative method 

 $���	 = 4 − 	3��8exp�#$��� − 19,   (7) 

where R – resistance of load resistor and U – input voltage 

of direct source (= UIN). 

The resulting solution for $2 quantity under steady-state 

condition is depicted in Fig. 2. 

The Schottky diode model can be described [3] 

 �12 = �1:exp�#�;<= − �3>�& − 1?,   (8) 
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where �1 - the saturation current; 31 - the series resistance; ;<= - the built in potential. 

 

Fig. 2.  Solution for $2∗ quantity determination under steady-state 

condition. 

Note: By similar way circuit with SiC PIN diode, based 

on [1] can be modelled: 

 	�1=A2 = �1. exp�−#;<=��exp�#$2� − 1&    (9) 

or       

  �1=A2 = �1��B − ;<=�/D&	/�E�	�, D = D�/�F + 1�.  (10) 

III. NON-LINEAR DYNAMIC SYSTEMS 

Many applications in technical practice which models are 

presented in following text should be described as non-

linear differential equation (DE) systems. In compact form: 

 G���
 �H�, ��H�, H& = I,J�H� = K���H�, H&.  (11) 

Such a system of ODE can be solved analytically and/or 

also numerically (e.g. by Euler explicit method) [1], [2]. If 

the matrix elements are non-stationary (e.g. time dependent 

ones) then system of equations cannot be solved by the 

methods using the matrix operation. As a solver for their 

solution the following numerical methods can serve, 

completed by fictitious exciting functions method making 

possible numerical solution of this DE system with non-

stationary matrices [1], [2], [5]. It deals with Euler's- and 

Taylor expansion methods for consequent numerical 

solution in Matlab environment. 

Simple electrical circuit given in Fig. 3 comprises a non-

linear resistor (e.g. varistor – resistor depending on voltage, 

thermistor – resistor depending on temperature). In this case 

it is 3LML with non-linear dependency on its current �N 

 3LML��N� = 3. exp�− �N OP �     (12) 

and consequently its voltage will be   $N = 3LML��N��N. 

 

Fig. 3.  Dynamical system with non-linear resistor 3LMLand its parasitic 

inductance lR and serial capacitor C. 

The following differential equations can written for 

quantities of this simple electrical circuit 

 QR=SRT = − N�U�VW �X − 	VW $A + 	VW $YZ ,R[\RT = 	A �X .  (13) 

Using fictitious exciting functions method and adapting 

system equations into matrix form yields 

dd^ _ �X$A` = a 0 −1 bNP1 cP 0 d _ �X$A` + 

 +e1 −10 0 fa $gh bNP3LML�X bNP d  (14) 

and it in discrete form using Euler explicit formula 

_ �X$A`L�	 = �e1 00 1f + ℎ a 0 −1 bNP1 cP 0 d� _ �X$A`L + 

 	+ℎ e1 −jX0 0 fa $gh bNP3LML�X bNP d
L

.  (15) 

where h – integration step. 

Another example of R-L-C circuit, with non-linear 

inductor L
non

, is shown in Fig. 4. 

 

Fig. 4.  Dynamical system with non-linear inductor kLMLand its parasitic 

resistance rL. 

The following differential equations can be written 

 QR=SRT = − lSX�U� �X − 	X�U� $A + 	X�U� $YZ,R[\RT = 	A �X − 	NA $A .  (16) 

The system equations into matrix discrete form using 

Euler explicit formula will be 

_ �X$A`L�	 = me1 00 1f + ℎ n 0 01 cP − 13cop _ �X$A`L + 

 +ℎ e1 −jX −10 0 0 f
q
rs
$gh kLMLP�X kLMLP$A kLMLP t

uv
L

 (17) 

The non-linear dynamical system with serial rectifier 

diode is presented in Fig. 5.  
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Fig. 5.  Dynamical system with serial rectifier diode D with respect of its 

non-linear dynamical model. 

Dynamical model of diode is presented by Q-V 

characteristic and non-linear capacitor c2LML model as 

follow: 

 w2 = w��exp�#$2� − 1&,  (18) 

 c2LML = c2�xyz�#$2�,  (19) 

where c2� = w�# and q – charge of capacitor (C) 

Applying Kirchhoff law for resistor current �N, diode 

current �2  and capacitor current �A2  we	obtain 

 �A2 = c2� �[��T = �N − �2,  (20)  

thus the resulting differential equation will be 

 
�[��T = [���	[�N�A�� 0����[��&−�1 �0����[���	&�A�� 0����[��&.  (21) 

Rather complex electrical circuit with serial rectifier 

diode is shown in Fig. 6. 

 
Fig. 6.  Output part of SMPS (DC/DC) converter with isolating HF 

transformer and non-linear rectifier diode and inductor. 

Based on above given approach the non-linear model of 

the circuit can be created and in discrete form using Euler 

explicit formula with 3� = �3 + j�� we have 

n �X$A$2oL�	 = �n1 0 00 1 00 0 1o + ℎ�−jX kP −1 kP 01 cP 1 3�cP 00 0 0��n �X$A$2oL + 

 ℎa1 kP −1 kP 0 00 0 0 00 0 1 −1dqr
s $gh$A21 c2LMLP . �X1 c2LMLP . �2tu

v
L
. (22) 

IV. SIMULATION AND EXPERIMENTAL VERIFICATION 

Simulation experiments have been done with non-linear 

inductor which inductance depends on its current. It has 

been measured using static biased method with bifilar 

windings of the inductor. One of them serves for providing 

of desired magnetic field strength and the other for precise 

inductance measuring, Fig. 7.  

 
Fig. 7.  Static biased measuring of non-linear inductance.  

Parameters of the measured inductor [10]: L = 32.5 µH; 

SFe = 31 cm2; N1 = N2 = 6.8; magnetic material 3F3; air gap 

δ = 28.5 µm; Lsat = 0. 

Values of the inductance kLML have been calculated from 

measured data as follow 

 k�LML = [S����[S�����=S����=S����� ∆^. (23) 

Calculated L – iL characteristic from measured data is 

given in graphic form in Fig. 8(a), the pre-calculated and 

simulated by different non-linear models [5] from data sheet 

in Fig. 8(b). 

 
(a) 

 
(b) 

Fig. 8.  Non-linear dependency of the inductor inductance - measured (a) 

and pre-calculated by different models (b). 

Simulation results for the electric circuit given by Fig. 4 

are shown using both Matlab and OrCAD-PSpice 

programming environment in Fig. 9. 
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x: 2·t/T; y: ─ uIN, ─ iL, ─ uL, ─ Lnon/L, 

(a) 

 
x: t [s]; y: ─ uIN, ─ iL, ─ uL, ─ Lnon/L, 

(b) 

Fig. 9.  Simulated quantities of the circuit in Fig. 4 under rectified AC 

supply and MatLab (a); simulated quantities of the circuit in Fig. 4 under 

rectified AC supply and PSpice environment (b). 

Parameters of simulations: L = 32.5 µH; C = 45 nF; 

f = 132 kHz; uIN = 6 V sin(ωt), rL = 0.001ωL; rC = 1000R; 

R = 33 Ω. 

V. CONCLUSIONS 

The non-linear static and dynamical systems described by 

differential equations were presented with non-linear 

components. Particularly, in steady state, it could be system 

of non-linear algebraic equations using fictitious exciting 

functions method. The analysis of electrical circuit with real 

non-linear inductor was presented provided by different 

modelling environments – Matlab and PSpice. The 

inductance of inductor has been measured and next used for 

simulation. Simulation results of both modelling 

environments have proved very good agreement. The 

comparison of measured proved simulation results will be 

given in future work.  
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