
71 
 

         ELECTRONICS AND ELECTRICAL ENGINEERING 
      ISSN 1392 – 1215                                                                                                2011. No. 3(109) 
                                             ELEKTRONIKA IR ELEKTROTECHNIKA  

ELECTRONICS
T 170 

ELEKTRONIKA
 

 

FPGA based Improved Hardware Implementation of Booth Wallace 
Multiplier using Handel C  
 
S. A. Shinde, R. K. Kamat  
VLSI Laboratory, Department of Electronics, Shivaji University,  
Kolhapur – 416 004, INDIA, e-mail: rkk_eln@unishivaji.ac.in 

 
 

Introduction 
 
Amongst the basic arithmetic operations over finite 

field, multiplication is the one which has received the most 
attention in the literature. This is obvious as it forms the 
foundation of most of the public-key cryptosystems, 
specifically RSA, Diffie-Helleman, EIGamal, the elliptic 
curve cryptosystems and the digital signal processing 
(DSP) operations [1]. In addition to the above mentioned 
applications,  Graphics and Process control are two more 
domains wherein the multiplier performance plays a 
crucial role.  The bottlenecks posed by multiplication in 
the above mentioned application areas are both temporal 
and spatial in nature.  Therefore it appears that, custom 
VLSI implementations in the form of Application Specific 
Integrated Circuits (ASIC) or the DSP processors are the 
only viable alternatives to address the latency demands of 
such computationally intensive applications, that too 
without compromising the spatial aspects inview of the 
propagation delays. However, even in the FPGA paradigm, 
the custom multiplication hardware embedded within a 
reconfigurable array has shown promising results and 
hence is a preferred choice currently due to the cost 
effective rapid prototyping design cycles as well as the 
possibility of concurrency, distributed arithmetic and 
extensive specialization [2–4]. Accordingly many 
researchers have implemented variants of the basic ‘Shift 
Addition’ method to realize the multipliers in FPGA. Some 
of the preeminent methods of multiplier implementation  in 
the FPGA paradigm are Scaling Accumulator, Serial by 
Parallel Booth, Ripple Carry Array, Row Adder Tree, 
Carry Save Array, Look-Up Table and  Partial Product, 
Computed Partial Product, Constant Multipliers from 
Adders, KCM multipliers, Booth Recoding and Wallace 
Trees. Amongst the above mentioned multiplier 
implementations, the Wallace tree and Booth multipliers 
stimulate VLSI implementation interests as the former 
reduce the depth of the adder chain thereby minimizing the 
time complexity while the later giving improved hardware 
efficiency due to less number of intended partial products.  
 

In this work we present design and implementation of 
Booth Wallace Multiplier on Xilinx FPGAs. Incidentally, 
the literature survey pertaining to the hardware multipliers 
reveals several reports regarding the Booth recoding 
combined with the Wallace tree. However the central 
theme of our implementation of the ‘Booth Wallace’ 
multiplier differs from the previously reported ones. We 
resort to the design of the Booth Wallace Multiplier in the 
FPGA paradigm using the higher level of abstraction using 
Handel C, which is a variant of C. The paper also 
exemplifies making the best of the algorithm by using ‘C’ 
based tools  without compromising the gate count and 
timing aspects of  the crucial arithmetic building blocks ike 
multipliers.  

The rest of the paper is organized as follows: In the 
section following introduction we review the prior art and 
emphasize our approach. This follows by the presentation 
of the ‘Booth Wallace’ Multiplier architecture and its 
implementation in Handel C. The results pertaining to the 
device utilization and timing aspects  for 8x8 multiplier 
core on Xilinx FPGAs  are then given. Finally we draw 
conclusion regarding its applicability in the last section.  
 
Prior Art 

 
The basic Wallace tree algorithm pioneered by 

Wallace suffers from the performance speed bottlenecks 
due to the time required in carry propagation addition. The 
same is overcome by using the carry save adders (CSAs) to 
add the numbers in redundant and carry free propagate 
manner. Furthermore, the crossover point where the 
Wallace tree is faster depends on the VLSI technology 
used i.e. whether the design is on an application specific 
integrated circuit (ASIC) or a field programmable gate 
array (FPGA). In the ASIC paradigm, the tree structure 
described by Wallace suffers from irregular 
interconnections and poses difficulty in generating 
optimum floor plan and efficient layout. Thus this fastest 
method of summing the partial products, suffers with the 
extremely complex wiring.  

 



72 
 

 
 

Fig. 1. Architecture of the Booth Wallace Multiplier 
 

par  
{ if(in1[0]==0) 

     { D0=0;} 
    else 

    {D0=in2;} 
     if(in1[1]==0) 
       { D1=0;} 
     else 
       {D1=in2@0;} 
   if(in1[2]==0) 
       {D2=0;} 
     else 
       {D2=in2@0;} 
   if(in1[3]==0) 
       {D3=0;} 
     else 
       {D3=in2@0;} 
    if(in1[4]==0) 
       {D4=0;} 
      else 
       {D4=in2@0;} 
    if(in1[5]==0) 
       {D5=0;} 
      else 
       {D5=in2@0;} 
   if(in1[6]==0) 
       {D6=0;} 
      else 
       {D6=in2@0;} 
    if(in1[7]==0) 
       {D7=0;} 
      else 

      {D7=in2@0;} 
 
Fig. 2. Booth Recoding in Handel C 
 
 
 
 

par 
{sum1=0@D0^0@D1^0@D2; 
carry=(0@D0&0@D1)^(0@D0&0@D2)^(0@D1&0
@D2);  } 
 
 par 
{carry1=carry[8:0]@0; sum2=0@D3^0@D4^0@D5;       
car=(0@D3&0@D4)^(0@D4&0@D5)^(0@D5&0@
D} 
 
 par 
 
{carry2=car[11:0]@0;sum3=0@D6^0@D7^0@sum1
; 
carr=(0@D6&0@D7)^(0@D6&0@sum1)^(0@D7&
0@sum1);} 
 
 par 
 {carry3=carr[13:0]@0; sum4 =(0@sum2) ^ 
(0@carry1) ^(0@carry2); 
A=(0@sum2&0@carry1)^(0@carry2&0@sum2) ^ 
(0@ carry1&0@carry2);} 
  
par 
 {carry4=A[11:0]@0; 
sum5=0@sum3^0@sum4^0@carry3; 
B=(0@sum3&0@carry3)^(0@sum3&0@sum4)^(0@
sum4&0@carry3);} carry5=B[13:0]@0; 
  
par 
 {sum6=0@sum5 ^ 0@carry5 ^ 0@carry4; 
C=(0@sum5 & 0@carry5)^(0@sum5 & 0@carry4) 
^(0@carry4 & 0@carry5); } 

 
Fig. 3. Booth recoding with wallace tree in handel C lisitng 
shows parallelism inculcated using the‘par‘ statement. 
 



73 
 

 
Fig. 4. Simulation of the wallace tree multiplier using ModelSim 
PE 
 

The lengths of these wires can affect the 
performance, and the wires themselves take up valuable 
layout area and therefore the  regular binary tree type 
multipliers seems to be  preferred. However the above 
mentioned pitfalls of the ASIC domain may be overcome 
by taking advantage of the parallel architecture of the state 
of art FPGAs. Literature review reveals good amount of 
work centered on the above theme. Technology mappers 
that maps RTL networks onto LUT based FPGA’s without 
expanding them for obtaining better results have been 
reported by many research groups. However, there are 
components like multipliers, decoders, RAMS etc. which 
cannot be handled efficiently by general purpose, mappers 
and require specialized tools called module generators. 
Many research groups have also reported such module 
generators for multiplier designs.  

However, our approach differs from all those reported 
in the literature. The main theme of our work is a platform-
based approach for obtaining portable FPGA source code 
to implement the Booth Wallace Multiplier. The platform 
used for the design is Handel C a basic variant of ‘C’ 
language facilitating designing at highest level of 
abstraction whilst targeting low-level hardware. Our 
approach treats a high-level system model specified in 
Handel C and inculcates parallelism in the source code 
itself which is eventually implemented on the FPGA.  

 
Architecture of the Booth Wallace Multiplier 
 

The architecture of the Booth Wallace Tree Multiplier 
is shown in figure 1. It comprises of the Booth recoder 
block cascaded to the Wallace Tree and finally summed by 
the Carry Look Ahead Adder (CLA). As shown in the 
figure, recoding of the bits is done at the first stage in 
parallel at all the bit positions thereby minimizing latency. 
By using the carry save adders (CSA) the speed is further 
improved as the carries are saved instead of propagated. 
The partial sum and carry are then given to the CLA to 
obtain the multiplication result. The architecture shown in 
figure 1 is implemented using Handel C. The very 
rationale behind the choice of the Handel C is its inherent 
parallel synchronous programming  

platform where the notion of time is fundamental to its 
specification. Further it facilitates encoding of the 
algorithm at behavioral level of abstraction and thus aids in 
exploiting the advantages of the algorithm at the fullest 
extent. Further it is packaged as part of a design suite 
called as DK1 which incorporates a modified version of 
the GNU preprocessor available in standard Windows 
development environment with dockable windows and 
customizable tool bars. The pseudo code (very close to the 
Handel C version) for the implementation of the Booth 
recoding is shown in figure 2, while the same cascaded 
with the Wallace tree is shown in figure 3. Notable feature 
of this code is instantiation of the intermediate variable in 
parallel manner so as to facilitate the execution in a single 
clock cycle.  
 
Table 1. Comparison of device utilization on different FPGAs 

 
Experimental Results 
 

The Booth Wallace Multiplier described above was 
simulated using ModelSim PE after conversion the Handel 
C program into VHDL. The simulation reveals correct 
operation for various 8 bit multiplicand and multiplier 
combinations. A snapshot of the simulation window is 
shown in figure 4. In order to compare the spatial aspects 
of the implementation, VHDL equivalent of the Handel C 
listing was synthesized using the Xilinx Webpack Version 
9.2. Table 1 shows the relative sizes, number of occupied 
slices and maximum delay on different Xilinx FPGA 
devices.  

We compared our results with the previously reported 
ones which ranges from the early 1994, paper by Canik 
and Swartzlander upto the latest  implementations of the 
Booth Wallace Multipliers using different routes. Our 
solution has shown significant advantages over the above 
mentioned previous reports in terms of the spatial and 
temporal specifications.   

 
Conclusions 
 

Significant research is underway to establish the 
competitive advantage of the Handel C over the 
conventional hardware descriptor languages in the arena of 
the real time implementation of multipliers. Our results 
evidenced that Handel C confirms to be one of the best 
alternatives not only in taking the best of the algorithmic 
implementation, but also provides competitive area and 
time efficiency.  The reported implementation has 
considerable potential in implementing higher order 
multipliers by its instantiation as a soft IP core.  
 

Device 

Number 
of Slice 

Flip 
Flops 

Number 
of 4 

input 
LUTs 

Number 
of 

occupied 
Slices 

Net 
Skew(ns) 

Max 
Delay  
(ns) 

xc3s500e-
4fg320 318 213 177 0.083 0.201 

xcv100-
4fg256 

(Vertex) 
327 213 182 0.077 0.493 

xc5vlx50-
3ff324 

(Vertex5) 
350 222 114 0.114 1.481 



74 
 

References 
 
1. Pierre D. J., Kalach K., Tittley N. Hardware Complexity of 

Modular Multiplication and Exponentiation // IEEE 
Transactions on Computers, 2007. – No. 56(10). – Vol. 1308-
319. 

2. Petersen R. J., Hutchings B. L. An Assessment of the 
Suitability of FPGA based Systems for use in Digital Signal 

Processing // Field-Programmable Logic and Applications. - 
Springer, 1995. 

3. Bencheva N., Kostadinov N., Ruseva Y. On Teaching 
Hardware/Software Co-design using FPGA // Electronics and 
Electrical Engineering. – Kaunas: Technologija, 2010. – No. 
6(102). – P. 91–94. 

4. NirmalaDevi M., Mohankumar N., Arumugam S. 
Modeling and analysis of Neuro–Genetic Hybrid System on 
FPGA // Electronics and Electrical Engineering. – Kaunas: 
Technologija, 2009. – No. 8(96). – P. 69–74. 

 
Received 2010 12 29 

 
S. A. Shinde, R. K. Kamat. FPGA based Improved Hardware Implementation of Booth Wallace Multiplier using Handel C // 
Electronics and Electrical Engineering. – Kaunas: Technologija, 2011. – No. 3(109). – P. 71–74. 

Applications requiring intensive arithmetic operations such as multiplication are exponentially increasing than ever before. The state 
of art FPGAs are the preferred implementation platforms for implementation of multipliers inspite of the speed and area issues. In this 
paper we present implementation of Booth Wallace Multiplier on Xilinx FPGAs. Our approach employs design at the higher level of 
abstraction using Handel C which also inculcates parallelism at the algorithmic level. Ill. 4, bibl. 4, tabl. 1 (in English; abstracts in 
English and Lithuanian). 
 
 
S. A. Shinde, R. K. Kamat. Wallace daugiklio, aprašyto Handel C programavimo kalba, diegimas atnaujintose FPGA 
strukt8rose // Elektronika ir elektrotechnika. – Kaunas: Technologija, 2011. – Nr. 3(109). – P. 71–74. 

Skaitmenin/je technikoje vis pla�iau taikomas daugiafunkcinis režimas. Tai susij� su did/jan�iu matematiniQ operacijQ poreikiu. 
Šiuo metu si�loma tobulinti jau sukurt� pa�i� strukt�r�. Wallace daugiklis, aprašytas Handel C programavimo kalba, diegiamas 
atnaujintose Xilinx FPGA strukt�rose. Pateikiami tokios strukt�ros pranašumai. Il. 4, bibl. 4, lent. 1 (anglQ kalba; santraukos anglQ ir 
lietuviQ k.). 
 
 
 




