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Abstract—In this paper an estimation of round-trip delay
(RTD) in OPC UA server-client channel was investigated in
various data communication networks including Ethernet,
WiFi, and 3G. Testing was carried out using the developed IoT
gateway device running OPC UA server and remote computer
running OPC UA client. The server and the client machines
were configured to operate in Virtual Private Network powered
by OpenVPN. Experimental analysis revealed that RTD values
are distributed in the wide range exhibiting difficult-to-explain
outliers significantly exceeding average RTD value. A
preliminary  exploration of the correlation between
instantaneous load of communication gateway processor and
RTD peaks was carried out on ARM Cortex A8 Texas
instruments processors running at 600 MHz and 800 MHz
clock frequency.

Index Terms—Round-trip server-client
communication; processor load.

delay;

I. INTRODUCTION

Merge of automation networks and data communication
networks takes place in the Internet-of-Things (IoT)
architectures. An important role in the IoT architecture is
dedicated to a so called IoT communication gateways
(CGW), that are aimed to ensure connectivity between
heterogeneous field networks (industrial buses, wireless,
machinery, building automation, sensors networks, etc.) and
IP based wide area data communication networks. Some of
the described IoT gateway architectures are dedicated to the
conversion between two connectivity protocols, for example
Zigbee to TCP/IP [1], CAN to GPRS [2], CAN to TCP/IP
(WiIMAX) [3], while other IoT gateways are multiprotocol
devices especially at the field side [4], [5].

A CGW exposes access to field data sinks and sources
towards Cloud hosted services. Mostly two technologies
Simple  Object  Access  Protocol (SOAP) and
Representational State Transfer (REST) are discussed for
web services provision [5], [6]. As a standard for application
level protocol the OPC UA standard (Open Platform
Communication Unified Automation)
(https://opcfoundation.org/) is expected to play a noticeable
role in IoT [7]. OPC UA protocol was designed for machine-
to-machine industrial interoperability and now is well
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established in industrial automation field. OPC UA is also a
cross-platform SOA (Service Oriented Architecture) for
process control.

Compared to the REST approach, SOAP style OPC UA
features a standardized security architecture, availability of
mature commercial software development kits (SDK), data
modelling tools (address space), and wide acceptance in the
field of industrial automation. Advantages of REST
approach are easier implementation, less requirements on the
performance of embedded system (resource constrained).
These advantages could be crucial for resources limited loT
nodes like remote sensors, but are less critical to
infrastructure devices like CGW. Recently described CGW
implementations are based on quite powerful processors like
ARM 9 [1], [8]-[9], ARM Cortex M4 [10], Intel
Atom/Quark SoC processors [11], etc.

The goal of our research is to investigate achievable
round-trip delay (RTD) between OPC UA server and client
in different data communication networks like Ethernet,
WiFi, 3G. Range of RTD parameter is needed to identify
possible application areas and characteristics of processes
that may be monitored or controlled using CGW connected
to Cloud services by means of OPC UA standard at
application level.

II. RELATED WORKS

Performance of OPC UA server-client communication
channel is investigated by Salvatore Cavalieri, et al. [12],
[13]. Authors used round-trip delay and delay/sampling
interval to quantify the performance of OPC UA. Factors
influencing the channel performance are:

1. OPC UA protocol and efficiency of its server and client

software implementation,

2. OPC UA server and client settings,

3. Underlying networks and used protocols,

4. Computing performance of target systems hardware

running server and client applications.

Cavalieri, et al. [13] focused on OPC UA performance
estimation using simulation environment, this way
abstracting from implementation of server and client SDK,
target hardware, underlying communication networks
(transport layer), etc. The main finding of their research is
that OPC UA subscription profile delay/sampling interval
and bandwidth utilization is highly dependent up on settings
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of subscription service (mainly Publish Interval). In our
experimental performance testing we run developed software
on the CGW and communicate data over a real
communication infrastructure. Specification of the test
environment in this case is much more challenging due to
big number of factors influencing status of communication
network load (3G, WiFi, Ethernet). However, physical
experiments enable us to produce real estimates of the
channel throughput and to verify the influence of CGW
hardware and software implementations.

III. COMMUNICATION GATEWAY ARCHITECTURE

We have implemented CGW based on Variscite System-
on-Module (SoM) with Linux Debian operating system.
Variscite SoM contains Texas instruments Cortex-A8
processor running at 800 MHz clock frequency, 512 MB
Flash memory and 512 MB DDR3 SDRAM, and on board
WiFi communication module supporting access point (hot
spot) and client modes.

At the software level CGW runs OPC UA server, which
was developed using Softing GmbH OPC UA SDK for
Linux. OPC UA client was developed using Softing GmbH
OPC UA client for Windows SDK. OPC UA binary mode is
used in all testings presented in Chapter V.

Virtual private network (VPN) was established in order to
assign non-global IPv4 address to CGW. For this purpose,
OpenVPN clients were installed on both server (CGW) and
client workstation. OpenVPN server was configured on the
Linux machine connected to Internet through Gigabit
Ethernet. VPN was also responsible for channel securing. In
order not to duplicate channel data encoding, OPC UA data
encryption was disabled.

Figure 1 presents a diagram describing interconnection of
OPC UA server and Linux processes denoted by Protocol
adapters and responsible for accessing data in field
networks. The communication between them is implemented
using Linux inter-process sockets technique.

Data access Data provider
module module
ol Protocol - QPCfUA
| interface
adapter 1 _% g| OPC |0
25 oa
gh 4
Protocol & Server
ot |
adapter 2

Fig. 1. Simplified component diagram of CGW application level software
architecture.

For testing purpose OPC UA server address space
containing 30 nodes of double type was created. A node
value is updated by simulated data from Protocol adapter
every 10 ms in order to simulate data generated by a process
under monitoring. It should also be noted that every node in
OPC UA address space is automatically supplemented by
two time stamps (source and server) each of 8 bytes size.

IV. TEST METHODOLOGY AND ENVIRONMENTS

Round-trip delay tr is defined as a time interval between
moments of data request by client and response reception by
the same client.
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Test environments comprising the CGW, OpenVPN
server, I[P gateway, and remote workstation running OPC
UA client were setup as specified in Table I and shown in
Fig. 2-Fig. 4. The presented network configurations are very
common for connecting loT gateways (like CGW) to
TCP/IP Wide Area Networks (WAN). Being connected to
WAN the CGW can access Cloud services, for example, to
store collected data in SQL or BigData databases. The
developed CGW prototype was initially dedicated to
facilitate connectivity between precision agriculture sensors
or machinery and Cloud services. However, [oT gateway is a
general purpose infrastructure device, which can be used in
variety of applications in the areas of smart cities, building
automation, healthcare, smart grid, etc. The CGW maintains
Ethernet, WiFi and 3G communication channels for
connectivity towards WAN. The motivation of VPN
utilization was already disclosed in Chapter I11.

TABLE I. TEST ENVIRONMENTS SPECIFICATION.

Test L.
. Description
environment
Ethernet CGW and workstation running OPC UA client are
directly connected to single IP router (ASUS RT-N53).
The workstation is connected directly to the WiFi AP
WiFi-AP (access point) hosted by the CGW. The AP is configured

to operate in IEEE 802.11g mode and is secured using
Wi-Fi Protected Access I (WPA2) security protocol.

CGW and client workstation are connected to the internet
via wired Ethernet connections. They both have
OpenVPN clients installed and are using VPN to

communicate. The cryptographic functions used by
OpenVPN were default (symmetric cypher: BlowFish
CBC 128; asymmetric cypher: RSA 1024; message digest:
SHAL1). TCP/IP stack tool traceroute reported 2 hops
(routers) to VPN server.

Ethernet-VPN
(Fig. 2)

CGW is connected to external WiFi AP (ASUS RT-N53).
CGW and client workstation are connected through Open
VPN tunnel.

WiFi-VPN
(Fig. 3)

Same as the Ethernet-VPN connection option, except the
CGW is connected to internet using 3G modem. The
traceroute tool reported 9 hops to VPN server.

3G-VPN
(Fig. 4)
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Fig. 2. Test environment setup Ethernet-VPN.

At the application level a remote client sends requests to
CGW OPC UA server to retrieve node values according to
the selected test case scenario:

1. 1 double type node request at max speed,

2. 10 double type node request at max speed,

3. 30 double type node request at max speed,

4. Same as C except 5 s waiting delays between adjacent

response and request were introduced by the client.
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Fig. 3. Test environment setup WiFi-VPN.
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Fig. 4. Test environment setup 3G-VPN.

We have opted such scenarios in order to investigate both
single in field acquired quantity delivery to remote client and
also a middle size set of field quantities, for example read
from machinery buses. To collect samples of RTD for its
statistical estimation, 1000 requests were generated by the
client. RTD was measured by the client software using
Windows API QueryPerformanceCounter function, which
retrieves the current value of the target system’s high
resolution (1 ps) time stamp.

V.

Round-trip delay average value E(tp), standard deviation

ROUND-TRIP DELAY ESTIMATION RESULTS

s(tg), minimal tp.;, and maximum ¢g,.. values are

calculated from experimentally acquired RTD samples and
are presented in Table II.
Throughput of the useful payload can be defined by

bxn
H = 5
1 tR

(1)

where b is number of bits per one OPC UA node value, 7 is
number of OPC UA nodes requested by client and delivered
by server (read operation), and ¢p is request RTD. The

useful payload consists of process parameter values (node
values) and their acquisition moment time stamp. For double
type nodes 64 bits are used to hold value and 64 bits are
used for time stamp. The useful payload throughput is less
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than the network throughput due to the data overhead of
OPC UA protocol. Average value of the throughput E(z4)

is calculated from average RTD value E(¢p) using (1), and
presented in Table II.

TABLE II. RTD ESTIMATION RESULTS.

Test Scena. |_E(R) | s(tg) | {Rmin | !R max | E()
env. rio Units

ms ms ms ms kbps

A 3.0 0.7 2.4 12.0 42

Ethernet B 4.4 1.1 3.4 17.1 292
C 6.7 1.6 5.9 247 572

D 8.8 3.2 4.0 45.0 435

A 5.0 5.0 33 73.2 26

Ethernet- B 4.4 2.7 3.2 52.4 289
VPN C 73 6.4 4.9 101.0 527
D 15.6 8.6 5.6 68.0 245

A 5.6 6.9 34 77.7 23

. B 7.3 14.6 3.2 114.4 175
WIF-AP C 74 90 | 49 | 1399 | 520
D 22.0 62.4 6.2 1663.7 175

A 9.5 124 4.9 174.2 13

WiFi- B 14.2 18.5 6.7 263.8 90
VPN C 17.4 29.6 7.1 235.6 221
D 20.9 22.4 10.1 3324 184

A 261.7 134.7 144.4 1141.3 0.5

B 267.9 139.2 150.2 1705.5 5

3G-VPN C 250.4 125.2 156.2 1552.7 15
D 284.9 131.8 162.2 | 3482.8 13

In Fig. 5 and Fig. 6 histograms of RTD samples are
shown. It is interesting to note that in case of 3G-VPN
environment (Fig. 5) RTD increases, when 5 s delays are
introduced between requests. This feature might be
important to consider when remote field process events must
be detected fast. In opposite, when only data logging is
required, RTD is of less importance because data may be
buffered in OPC UA server’s address space together with
precise time stamp of acquisition moment. Then buffered
arrays of data can be delivered to OPC UA client for non-
real time inspection.
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Fig. 5. RTD histograms derived from 3G-VPN test case C scenario (a) and
D scenario (b). PDF — probability distribution function, CDF — cumulative
distribution function.

From Fig. 6 it is seen that in case of WiFi-VPN
environment the probability distribution function (PDF) is
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close to exponential and contains a considerable amount of
very high RTD values (column “More”). This phenomenon
was also observed in all the rest test environments reported
in Table II, except scenario D. Because these outliers of
RTD can heavily affect the worst case data delivery delay
from the observed process, it is of interest to identify the
reason of their appearance. Firstly, we examined test
environments using ping utility from TCP/IP stack. Delays
reported by the ping utility did not indicate presence of any
considerable outliers of ping packets RTD. Secondly, we
raised a hypothesis that random RTD increases are due to
insufficient CGW CPU performance. In chapter VI we give
some preliminary results of CPU load observations.
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40 i 80
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£ 0 T
10 20
0 —/ 0
5 10 15 20 25 30 35 40 45 30 Mor=
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Fig. 6. RTD histograms derived from WiFi-VPN test case C scenario.

It also should be noted that Linux scheduler allocates
10 ms time slots for each active software process (thread)
execution. Therefore, every RTD value fluctuation in the
range of 10 ms can be due to process switching activities in
CGW operating system.

VI. ROUND-TRIP DELAY AND CPU LOAD RELATIONSHIP

To investigate a relationship between server’s CPU load
and OPC UA channel’s RTD, the recording of CPU load
was carried out during the testing. Results presented in this
chapter were acquired using reduced clock frequency CGW
processor (600 MHz instead of 800 MHz), in order to
investigate the suspected insufficiency of the processing
performance. A sample plots of obtained results are
presented in Fig. 7.

Though the recorded RTD and CPU load patterns
intuitively seem to correlate, the calculation of Pearson
correlation indicated rather weak relationship. CPU load
fluctuates due to the various activities of internal Linux
processes. We assume that until a certain level the CPU load
influence upon RTD is minor. Therefore, we defined the
following hypothesis: RTD peaks exceeding the least
observed RTD value by N times, are related to the events of
CPU load exceeding threshold level K. In order to verify this
hypothesis the experimentally acquired RTD and CPU load
patterns (Fig. 7(a) and Fig. 7(b)) were transformed to the
corresponding binary sequences:

(1, tz()= N-min(ty),
pear D=1, @)
A tR(l) <N~mln(tR).
LCPUpeak (= . fpea (3)
0, otherwise .

Then the Pearson correlation coefficient between these
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sequences was calculated and presented in Table III (PEA
columns). In all cases (N and K value combinations) the
significance level (p-value) of hypothesis of no relationship
between sequences is less than 0.05, indicating that the
corresponding correlation is significant. Similarity between
binary patterns alternatively can be estimated using variety
of measures [14]. We have selected to calculate Kulczynski-
II index (KUL columns). This index represents conditional
probability that the peak is present in RTD patterns, given
that the peak is also present in CPU load pattern. It can be
seen from Table III, that Kulczynski-II index is quite close
to Pearson correlation coefficient. Therefore, we assume that
the larger are appearing peaks of RTD pattern the higher is
probability they are due to the increased load of CPU.
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Fig. 7. RTD (a), and CPU load (b) of WiFi-VPN test case C scenario.
TABLE IIl. RTD PEAKS AND CPU LOAD CORRELATION.
CPU load threshold K
RTD'peak threshold 20 % 50 % 60 %
gain N (Eq. (2))
PEA | KUL | PEA | KUL | PEA | KUL
5 times 0.79 | 0.82 | 0.70 | 0.75 | 0.65 | 0.72
10 times 0.89 | 090 | 0.81 | 0.83 | 0.75 | 0.79
20 times 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00

VII. PROFILING OF CPU LOAD

The approximate profiling of CGW CPU load due to
separate software processes was carried out by reading
Linux  kernel  system  statistics files  proc/stat
(http://man7.org/linux/man-pages/man5/proc.5.html),  that
provide an ongoing look at processor activity in operating
system. The CGW software then added the corresponding
readings to its OPC UA server’s address space. In particular,
load of CPU due to Linux process executing OPC UA
Server, Protocol adapter, VPN client, WiFi driver and total
CPU load were recorded during the testing. From a typical
profiling charts (Fig. 8 and Fig. 9) it is evident that OPC UA
server process contributes most significantly to the overall
CPU load. Other processes like Protocol adapter, VPN
client, WiFi driver are less demanding for processor
performance. From Fig. 9 we may see that processing
performed by OPC UA server constitute nearly the whole
CPU load in Ethernet-VPN environment. In case of the
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WiFi-VPN setup some processor resources are occupied by
WiFi driver. Therefore, during WiFi-VPN setup testing RTD
was larger (see Table II), resulting in less requests arriving
from the client per time unit. That means OPC UA server
handled less requests in WiFi-VPN case compared to
Ethernet-VPN. The whole CPU load was more sporadic in
WiFi-VPN case (Fig. 8), perhaps due to WiFi driver
execution by the CGW main processor.
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Fig. 8. CPU load by CGW software processes profile during WiFi-VPN
test case C scenario testing.
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Fig. 9. CPU load by CGW software processes profile during Ethernet-VPN
test case C scenario testing.
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Fig. 10. CPU load by CGW software processes profile during WiFi-VPN
test case D scenario except delays between requests were 150 ms testing.

0 10

Load of CGW CPU decreases significantly (see Fig. 10),
when 150 ms delay is introduced between client requests.
Demand for such an update rate (compared to full speed
interrogation) is probable for example in applications
targeting machinery generated data retrieval from CAN bus
and delivery to OPC UA client.

A more thorough investigation and Linux processes
profiling is required to identify reasons of RTD outliers
appearance in OPC UA data delivery channel.

VIII. CONCLUSIONS

In WiFi and Ethernet based networks OPC UA channel
average round-trip delay achievable using 800 MHz ARM
Cortex A8 processor running Linux operating system is in
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the range of several milliseconds per one OPC UA node.
Grouping OPC UA nodes is beneficial, because RTD
increases less times than the number of nodes is increased
(Table II). In 3G network average RTD of OPC UA channel
was around 250 milliseconds and little dependent on the
number of nodes delivered to client (from 1 to 30 nodes).

In all networks RTD exhibited sporadic outliers exceeding
average value up to more than 20 times. Except from 3G-
VPN environments we suspect that these outliers were
caused by temporary overload of CPU (100 % load).
Number of such outliers was significantly higher when main
processor was running at 600 MHz compared to 800 MHz
clock frequency.

OPC UA server is a computational performance
demanding application. In case full speed interrogation by
OPC UA client is executed, 800 MHz ARM Cortex A8
processor was only enough to handle OPC UA server
execution without affecting round-trip delay in data transfer
channel.
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