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1Abstract—Metrological properties of a two-current-source
bridge circuit were tested with the use of the method of
measuring resistance increments of strain gauges. An
unconventional system was investigated in comparison with the
commonly used Wheatstone’s half-bridge, quarter-bridge and
Anderson’s loop. Input-output characteristics of the systems
tested with a current supply were examined experimentally.
Error values of offset and gain of the characteristics in relation
to the characteristics of reference were taken as the criterion of
comparison. Moreover, standard uncertainties of y-intercept
and slope coefficients (of the straight lines) were analysed. The
coefficients with their uncertainties are presented in tables.
Errors for three tested systems with two metal strain gauges or
with one semiconductor are presented on graphs. Additionally,
the errors change, resulted from the spread of initial
resistances as the quantity influencing the uncertainties of
offset and gain coefficients, was defined for the bridge circuits.

Index Terms—Temperature sensors; strain measurement;
measurement techniques.

I. INTRODUCTION

This article presents an attempt to compare metrological
properties of selected direct current supplied systems, i.e. a
two-current-source bridge [1], a Wheatstone bridge [2]–[4]
and an Anderson’s loop [5]. It is widely known that the type
of the system used in a device influences the linearity of the
output voltage and the sensitivity of the system to the
measured quantity change [3], [6], [7]. It is described in
articles where strain gauge deflection measurements are
presented. Works [8], [9] show significant differences
between parameters values of a regular voltage supplied
quarter-bridge and a two-current-source supplied system.
The author of [8], [9] analysed nonlinearity errors and
sensitivity changes of the output voltage at a great range of
metal strain gauge deflection for both systems. It is only
briefly mentioned that the ratio of the output voltage to the
supply voltage is two times greater in the Anderson’s loop
than in the Wheatstone’s bridge (at equal power dissipation
in its elements). In the Anderson’s system it was also
possible to obtain a greater ratio of signal to noise (6 dB)
[10].

The aim of experiments presented in this paper is to
examine the usefulness of a 2J+2R two-current-source
bridge in indirect resistance measurements. Other
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measurements were conducted at the same time with the use
of the same type sensors applied in commonly used systems:
a Wheatstone’s current supplied bridge and an Anderson’s
loop. Input-output characteristics of the tested systems were
determined experimentally. The values of the obtained
offset errors and gain errors towards the characteristics of
reference were taken as the criterion of comparison. The
authors consider these elements of the article to be original.

II. TESTED DC MEASUREMENT SYSTEMS AND THE
REFERENCE SYSTEM

The following systems were tested: 2J+2R two-current-
supplied bridge (Fig. 1), Wheatstone’s bridge (Fig. 2),
Anderson’s loop (Fig. 3). A Keithley 2000 multimeter is a
reference system (Fig. 4). Two configurations of each
system are analysed respectively. First, one with one
semiconducting strain gauge R1 (the range of resistance
change – 1 Ω, resistance relative increment – |ε1| ≤ 0.01, ε2 =
0). And the second one with two metal strain gauges R1

and R2, (the range of the resistance modules mean average –
0.1 Ω, resultant relative increment of sensors resistance – ε =
0.5(|ε1| + |ε2|) ≤ 0.001).

Fig. 1. Two-current-source bridge (2J+2R).

Fig. 2. Wheatstone’s bridge.
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Fig. 3. Anderson’s loop (simplified version, without subtractors).

Fig. 4. Direct measurement of resistance with the use of a multimeter
(reference system).

The earlier analysis of a two-current-source circuit
provided information about the range of linearity of output
voltages in the function of resistance relative increments of
ε1, ε2 sensors. The range of relative increment of sensors
resistance is relevant to the linearity condition of output
voltages of a two-current-source bridge, i.e. |ε1 + ε2| << 1.
Laboratory measurements showed that relative errors of the
measured increments differences and sums of two resistance
variables are not greater than 9.7 %.

The tested systems were built of identical elements, which
enabled reliable comparison of characteristics parameters.
Additionally, the same sensor (or a set of identical sensors)
was used. Strain gauges working conditions were also
identical for each case, e.g. equal values of power emitted
by a sensor (or sensors) and the same temperature of its
activity.

III. THE WAY OF STRAIN GAUGES DISTRIBUTION ON A
METAL BEAM AND THE BENDING MECHANISM

The strain gauges were stuck on thin, cuboidal beams
made of tool steal. On the top surface of the first beam one
semiconductor gauge AP 120-6-12 (OPS Gottwaldov) was
placed. On the other case, one metal gauge (foil) TF-3/120
(Tenmex) was stuck on each side of the beam (top and
bottom), at the same distance from the point of its
attachment (Fig. 5).

The resistance increments of the strain gauges ε1, ε2 were
imposed by a mechanism deflecting the beam with the use
of a micrometer screw gauge and providing a good
repetitiveness of the deflections (Fig. 6).

Fig. 5. The way of metal strain gauges distribution on a one-sided attached
cantilever beam undergoing deflection (X). Symbols: ε1 – positive relative
increment of the top gauge resistance (the gauge is stretched), ε2 – negative
relative increment of the bottom gauge (the gauge is compressed).

Fig. 6. Laboratory stand with a mechanism enabling simple bending of the
beam. The photo presents a cantilever beam being deflected (black dotted
line color). The micrometer screw gauge is used to deflect the beam.

IV. AMPLIFIED RELATIVE RESISTANCE INCREMENT IN THE
REFERENCE SYSTEM

The resistances of strain gauges in the reference system
were measured directly with the use of a precise Keithley
2000 multimeter. The resistance relative increments were
multiplied by a constant W. Its value equals the voltage
amplification of amplifiers applied to the outputs of the
systems shown in Fig. 1–Fig. 3.

The resistance relative empirical increment of a
semiconductor strain gauge was determined according to the
following equation
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where W – constant (W = 100 was assumed), R1i – measured
value of resistance for deflection Xi (where the number of
measurements i = 1 to 100), R10 – initial resistance of a
strain gauge (for deflection X1 = 0 mm).

The resistance average relative empirical increment for a
set of two foil strain gauges, however, was determined
according to the following equation
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where R1i, R2i – measured value of resistance for deflection
Xi (where the number of measurements i = 1 to 100), R10, R20

– initial resistances of strain gauges (for deflection X1 = 0
mm).

V. MEASUREMENT EQUATIONS OF DC TESTED CIRCUITS

The analysed circuit can work with one pair of resistance
sensors and may be used to measure two increments, as well
as the sum and difference of resistances, at the same time.

The following equations (3) and (4) can be used as the
measurement equations for a two-current-source bridge
circuit:
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It is assumed that J1 = J2 = J because an inequality of
currents results in additional components of (3) and (4).
Then the output voltages depend also on a difference of
currents ΔJ.

As it can be observed, the voltage UAB’ changes for
subsequent beam deflections Xi, and the UDC’ is close to
zero. This derives from equations (3), (4) and from the way
of strain gauges arrangement on the beam presented in
Fig. 5 (during beam deflecting, the increment ε1 is always
positive while ε2 is always negative, and the modules have
the same values |ε1| = |ε2|). After transformations of equation
(3), for a circuit with one strain gauge (ε2 = 0), equation (5)
was obtained, and for the circuit with two strain gauges (ε1 >
0 ∩ ε2 < 0 => ε1 - ε2 = |ε1| + |ε2|) – equation (8), presented in
Table II.

Additionally, circuits from Fig. 2 Fig. 3 were analysed,
assuming that R10 = R20 = R30 = R40 = Rr = R0. As a result,
measurement equations of other circuits were obtained.
Those equations for different configurations are also
included in Table I and Table II.

TABLE I. MEASUREMENT EQUATIONS OF TESTED CIRCUITS.

Circuit with one strain gauge ( 1W W  )
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Current J , existing in equations (3) and (4), is a mean
average of sources 1J and 2J currents. It was measured
through voltage decreases 1RJU and 2RJU on additional
resistors JJJ RRR  21 of low value. In the case of the
Wheatstone’s bridge circuit, the current of the supply source
J was measured in the same way.

TABLE II. MEASUREMENT EQUATIONS OF TESTED CIRCUITS.

Circuit with two strain gauges ( 1 20.5 (| | | |)W W    )
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VI. CRITERION OF CIRCUITS COMPARISON AND DATA
ACQUISITION

The values of gain and offset errors of appropriate
processing characteristics were taken as the comparison
criterion of the tested circuits. The fact of the eleven-fold
beam deflection X (Fig. 5, Fig. 6) in each configuration was
the starting point of the research. As a result, output voltages
(Fig. 1–Fig. 3) occurred. They were amplified one hundred
times, measured and averaged (out of 200 samples) in a data
acquisition system presented in Fig. 7 (LabJack UE-9Pro).
This enabled calculating strain gauges resistance average
relative increments W in LabVIEW with the use of
equations (5)–(10). Thereafter, measurement results were
worked out with the weighted least squares regression
method [11]. Estimators of average relative increments Ŵ
were determined in this way

ˆ ,W u ua X b   (11)

where au – characteristics gain coefficient of the tested
circuit (ad, aw or ap), bu – characteristics offset coefficient of
this circuit (bd, bw or bp), where subscript stand for d – two-
current-source bridge, w – Wheatstone’s bridge, p –
Anderson’s loop.

Fig. 7. Output voltages acquisition system of three tested circuits.

Figure 8 presents a geometrical interpretation of absolute
gain Δn and offset Δp errors. Likewise, relative errors of
linear regression models of tested circuits were defined [12]
in the following way:
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where εWmax – measurement range (processing) εWmax = aKj

Xmax, Xmax – maximum deflection of the beam, aK1 –
reference characteristics gain coefficient of a semiconductor
strain gauge (j = 1), aK2 – reference characteristics gain
coefficient of two metal strain gauges (j = 2).
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Fig. 8. The way of determining characteristics offset Δp and gain Δn errors
of tested circuits towards the reference characteristics (Keithley).

As it can be observed, errors (12), (13) were determined
by comparing linear regression models (determined for three
circuits) with a reference model (regarded as close to ideal).
Those errors should have possibly smallest values.
Reference models were determined regarding the data
obtained as a result of gradual, linear deflection of strain
gauges and direct measurements of their resistance changes
with a precise Keithley 2000 multimeter (Fig. 4). Regression
lines 1Ŵ Ka X  and 2Ŵ Ka X  were recognized as
reference characteristics. Moreover, coefficients standard
uncertainties au, bu of linear regression models (11) were
calculated [11].

The proposed comparisons of parameters let us evaluate
metrological properties of a two-current-source bridge
2J+2R in collation with classic measurement systems.

VII. UNCERTAINTY ANALYSIS OF REGRESSION LINES
COEFFICIENTS

The uncertainties of resistance relative increments were
calculated assuming that the input values ',ABU J in
equation (3) were correlated. According to the GUM guide
[13], all standard uncertainties were denoted by small letters
u. The combined uncertainty of the resistance relative
increment  'c Wu  , considering only  'ABu U ,  u J

uncertainties, was calculated with the use of equation [13,
Annex H]
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where  ',ABr U J – coefficient of correlation between

input values 'ABU and J .
During the following stage of calculations, an additional

source of uncertainty, resulting from resistance dispersion
R10 = R20 = R30 = R40 = Rr1 = Rr2 = R0 of the bridge, was
taken into consideration. The resistance boundary error R0

was estimated with the total differential method, obtaining
± 0.5 %. Considering a different character of uncertainties
 'c Wu  (A and B type [13], from the measurements) and

u(R0) (B type, from estimations), they were geometrically
added, in compliance with the rule of uncertainty
propagation [13]. The approximated combined standard
uncertainty value of the resistance relative increment
measurement was obtained in this way
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In equation (11), the resistance relative increment is the
dependent variable. Different measurement uncertainties
 c Wu  were obtained for particular Wm (m = 1, 2 to 11).

The uncertainties result from sources of both A and B types.
Whereas deflection X is an independent variable.

As uncertainties  c Wu  have different values, the line
coefficients (au and bu) were determined with the weighted
least squares regression method [11]. Expanded
uncertainties U(au) and U(bu), however, were determined
taking into account the coverage factor k = 2 and the
confidence level p = 95 %. Additionally, average estimation
error (square of residual variance) was calculated for each
model (5)–(10)
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where L – number of observation (L = 11), K – number of
estimated parameters (K = 2).

The relative average estimation error was related to the
average increment module
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TABLE III. COMPARISON OF PARAMETERS au AND bu OF THE DETERMINED MODELS, THEIR EXPANDED UNCERTAINTIES U(au), U(bu),
(FOR k = 2 AND p = 95%) AND AVERAGE RELATIVE ESTIMATION ERRORS FOR CIRCUITS WITH ONE SEMICONDUCTOR STRAIN GAUGE

(THE RANGE OF DEFLECTION Xmax = 1 mm, εWmax = 0.866201).
Two-current-source bridge 2J+2R ad bd U(ad) U(bd) sew [%]

0.5 % dispersion R0 0.915619 0.152809 0.000075 0.000023 4.12
without dispersion R0 0.875020 0.174259 0.000017 0.000009 3.13
Wheatstone’s bridge aw bw U(aw) U(bw) sew [%]
0.5 % dispersion R0 1.017133 0.090555 0.000133 0.000041 7.59

without dispersion R0 0.935297 0.124349 0.000032 0.000020 5.00

Anderson’s loop
ap bp U(ap) U(bp) sew [%]

0.874489 0.578160 0.000060 0.000032 1.71
Note: parameter of the reference (Keithley) model 1ˆW Ka X  (aK1 = 0.866201) and average relative estimation error ews = 1.16 % for L = 100, K = 1.
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TABLE IV. COMPARISON OF COEFFICIENTS au AND bu OF THE DETERMINED STRAIGHT LINES AND THEIR EXPANDED
UNCERTAINTIES (FOR k = 2 AND p = 95 %) AND AVERAGE RELATIVE ESTIMATION ERRORS FOR CIRCUITS WITH TWO METAL STRAIN

GAUGES (THE RANGE OF DEFLECTION Xmax = 10 mm, εWmax = 0.083545).
Two-current-source bridge 2J+2R ad bd U(ad) U(bd) sew [%]

0.5 % dispersion R0 0.00840671 -0.10963994 0.00000073 0.00000441 0.12
without dispersion R0 0.00831815 -0.10960964 0.00000012 0.00000065 0.12
Wheatstone’s bridge aw bw U(aw) U(bw) sew [%]
0.5 % dispersion R0 0.00882729 0.00260378 0.00000012 0.00000040 0.92

without dispersion R0 0.00882690 0.00260405 0.00000011 0.00000040 0.92

Anderson’s loop
ap bp U(ap) U(bp) sew [%]

0.00837743 -0,01357607 0.00000006 0.00000038 0.26
Note: parameter of the reference (Keithley) model 2ˆW Ka X  (aK2 = 0.00835456) and average relative estimation error ews = 3.13 % for L = 100, K = 1.

VIII. MEASUREMENT RESULTS AND ANALYSIS

Estimated parameters au and bu of linear regression
models, their expanded uncertainties U(au) and U(bu), as
well as average relative estimation errors sew are given in
Table III and Table IV.

Figure 9–Fig. 12 was made on the basis of (12), (13) and
Table II, Table III. The differences between particular tested
circuits are visible. Except for Wheatstone’s half-bridge,
offset errors (Fig. 9(b) and Fig. 10(b)) for models without
dispersion R0 are quite big (over 10 %).

a)

b)
Fig. 9. Gain errors (a) and offset errors (b) for three tested circuits with one
semiconductor strain gauge (models without dispersion R0).

a)

Fig. 10. Gain errors (a) and offset errors (b) for three tested circuits with
two metal strain gauges (models without dispersion R0).

Low resistance increment measurement (up to 1 Ω) is one
reason of this situation. It is also worth stressing that in both
experiments gain errors for a two-current-source bridge
appeared significantly smaller (Fig. 9(a), Fig. 10(a)).

Fig. 11. Offset/gain error change for a two-current-source bridge 2J+2R
and a Wheatstone’s bridge (with one semiconductor strain gauge) after
considering dispersion R0 as an input quantity affecting the coefficients
uncertainty au and bu.

Fig. 12. Offset/gain error change for a two-current-source bridge 2J+2R
and a Wheatstone’s bridge (with two metal strain gauges) after considering
dispersion R0 as an input quantity affecting the coefficients uncertainty au
and bu.

As it can be observed in Fig. 11 and Fig. 12, accepting
resistance dispersion R0 of ± 0.5 % value affects the change
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in both gain and offset errors. Wheatstone’s half-bridge with
two metal strain gauges appeared to be the least sensitive to
the circuits initial resistances dispersion (Fig. 11, Fig. 12).

IX. CONCLUSIONS

The following conclusions and remarks can be formed on
the basis of the research results:

For a two-current-source bridge 2J+2R with two metal
sensors (Table III), the uncertainty of linear models
parameters ˆW u ua X b   reach the greatest values. In the
case of cooperation with semiconductor sensors (Table II),
those parameters reach the greatest values for the
Wheatstone’s quarter-bridge (model with dispersion R0).

In the case of circuits with one semiconducting strain
gauge (Fig. 9(a)), smaller values of gain error were obtained
for the Anderson’s loop and 2J+2R bridge than for the
Wheatstone’s quarter-bridge. The two-current-source bridge
2J+2R appeared to be less sensitive to resistance dispersion
R0 than the classic quarter-bridge (Fig. 11). Moreover, a
better adjustment (smaller average estimation error sew) of
the linear model to empirical data from the 2J+2R bridge in
relation to data from the Wheatstone’s bridge (Table III)
was obtained.

In the other experiment (with two metal strain gauges),
smaller values of gain error were also obtained for the
Anderson’s loop and the two-current-source circuit, whereas
greater values – for the Wheatstone’s half-bridge
(Fig. 10(a)). The Wheatstone’s half-bridge appeared to be
significantly more sensitive to resistance dispersion R0 than
the 2J+2R bridge (Fig. 12).

Resistance R0 occurrence in measurement equations
(5), (6), (8), (9) is a drawback of bridges in relation to
Anderson’s loop. If the R0 value is defined imprecisely in a
two-current-source bridge, it affects both the gain and the
offset error (Fig. 11, Fig. 12).

The interpretation of the results was done without
considering the influence of parameters of operational
amplifiers on the measurement uncertainty. Identical
amplifiers were applied in all three tested circuits. It was
accepted that they have the same influence on the circuits
input-output characteristics.

The unconventional circuit 2J+2R allows to measure two
parameters simultaneously. It can be utile in industry where
there is a need to measure mechanical strain and the change
of temperature of strain gauges in a specific localization. A

disadvantage is that two current sources in the circuit should
provide equal currents.

In the research presented above, the influence of one
parameter (mechanical deflection) on the resistance
increment of sensors was analysed. Further work will
concern a two-current-source bridge application in
simultaneous measurements of two parameters, e.g.
deflection and temperature.

REFERENCES

[1] W. Walendziuk, A. Idzkowski, Z. Machacek, Z. Slanina, “Evaluation
of Pt100 sensor deflection effect during strain measurements”,
Elektronika ir Elektrotechnika, vol. 21, no. 4, pp. 23–26, 2015.
[Online]. Available: https://doi.org/10.5755/j01.eee.21.4.12776

[2] B. Maundy, S. J. G. Gift, “Strain gauge amplifier circuits”, IEEE
Trans. Instrumentation and Measurement, vol. 62, no. 4, pp. 693–700,
2013. [Online]. Available: http://dx.doi.org/10.1109/TIM.2013.
2246904

[3] T. Islam, S. A. Khan, S. S. Islam, Harsh, “Sensitivity enhancement of
wheatstone bridge circuit for resistance measurement”, Sensors &
Transducers Journal, vol. 6, pp. 96–102, 2009.

[4] N. A. Gilda, S. Nag, S. Patil, M. S. Baghini, D. K. Sharma, V. R. Rao,
“Current excitation method for delta r measurement in piezo-resistive
sensors with a 0.3-ppm resolution”, IEEE Trans. Instrumentation and
Measurement, vol. 61, no. 3, pp. 767–774, 2012. [Online]. Available:
http://dx.doi.org/10.1109/TIM.2011.2172118

[5] L. Cvitas, Z. Hocenski, “Increasing accuracy of temperature
measurement based on adaptive algorithm for microcontroller
transmitter”, Tehnicki Vjesnik-Technical Gazette, vol. 17, no. 4,
pp. 445–452, 2010.

[6] C. Pedersen, S. T. Jespersen, J. P. Krog, C. Christensen,
E. V. Thomsen, “Combined differential and static pressure sensor
based on a double-bridged structure”, IEEE Sensors Journal, vol. 5,
no. 3, pp. 446–454, 2005. [Online]. Available: https://doi.org/
10.1109/JSEN.2005.845199

[7] M. M. S. Anands, Electronic Instruments and Instrumentation
Technology. Prentice-Hall of India: New Delhi, 2006.

[8] M. Kreuzer, “Linearity and sensitivity error in the use of single strain
gages with voltage-fed and current-fed circuits”, Technical literature
of Hottinger Baldwin Messtechnik, [Online]. Available:
www.hbm.com

[9] M. Kreuzer, “Wheatstone bridge circuits shows almost no
nonlinearity and sensitivity errors when used for single strain gage
measurements”, Technical literature of Hottinger Baldwin
Messtechnik, [Online]. Available: www.hbm.com

[10] A. D. Cuenca, L. O. Beltran, J. P. Talledo Vilela, J. C. Miranda,
“Comparison of microstrain indicators measurements based on
Anderson’s Loop and Wheatstone Bridge”, in Proc. 16th Int. Conf.
Electronics, Communications and Computers (CONIELECOMP
2006), 2006.

[11] T. P. Ryan, Modern Regression Methods. Wiley: New York, 1997.
[12] B. Heimann, W. Gerth, K. Popp, Mechatronik, Hanser

Fachbuchverlag. Leipzig, 2007. (in German)
[13] Evaluation of measurement data - Guide to the expression of

uncertainty in measurement, First edition, JCGM 100:2008, [Online].
Available: www.bipm.org

38




