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Introduction 

The task of noise reduction is a central theme in a wide 
variety of fields. As the biomedical signals and the random 
noise often have overlapping bandwidths, the conventional 
methods based on the spectrum analysis did not work well 
for this data. Due to its simplicity in implementation and 
efficiency in computation the nonlinear phase-space 
projection technique together with singular value 
decomposition or approximate joint diagonalization a set 
of time-delayed covariance matrices procedure is an 
essential tool in noise reduction [1–5], signal detection [7, 
8] and biomedical signal processing [9] algorithms. 
Several phase space projection methods, based on 
subspace decomposition, were proposed for application to 
the problem of additive noise reduction in the context of 
phase space analysis – the global projections method [2], 
[5] and the local (nearest neighborhoods) phase spaces 
method [1–4], [6].The local projection approach project the 
data in the neighborhood onto the hyper-plane and bring 
the flow pattern deviated back to the real dynamics system 
[6]. This approach has achieved nice noise reduction 
effects and has been applied to the speech signals, 
biomedical signals, mechanical vibration signals, etc. The 
local models process data in the vicinity of local 
neighborhoods leading to more detailed and possibly more 
complex models in comparison with the global projection 
methods. On the other hand, the local projection noise 
reduction approach is influenced by the neighborhood 
selection greatly and usually, neighborhoods merge if all 
data are contaminated by large amounts of noise, therefore 
these methods performed well with small or moderate 
amounts of noise. 

The objective of this paper is to investigate the 
denoising performance of an improved local projection 
noise reduction approach based on 2D model of neighbors. 
The neighborhood tensor of 2D neighbors – windows with 
several consecutive vectors of reconstructed phase-space – 
is computed rather than neighborhood matrix of each 
vector. Tensor approach is compared with its matrix-

valued counterpart, which requires stacking the 2D 
neighbors into one highly structured neighborhood matrix. 

 

Local Projection Noise Reduction Algorithm 

A noisy time series YKZ[ZPQ\  could be reconstructed to a 
m-dimensional phase space by selecting the embedding 
dimension m and time delay ], each phase point in the 
phase space is defined by [10] 

  ^Z � _KZ2 KZ`a2 KZ`�a2 b 2 KZ`�);Q
acd
,  (1) 

where � � :2'2 b 2 + � �H � :
], and �e
d denotes the 
transpose of a real matrix. At ] � :the reconstructed 
phase space matrix f  with m rows and g � + � H , : 
columns (called a trajectory matrix) is defined by 

 ff � h KQ K� b K\;)`QK� K< b K\;)`�i i j iK) K)`Q b K\
k.   (2) 

The process of finding the neighbors of each point ^Z in 
phase space is the most expensive step in most nonlinear 
noise reduction algorithms. Usually, the near neighborhood 
of the reference point ^Z is defined as  

NZ l Ym&n om& � mZo p q2 : r s r g[2  (3) 

where q – the size of the neighborhood. It becomes a 
nontrivial problem to identify the correct neighbors if all 
data are contaminated by large amounts of noise. When the 
neighborhood radius is too small, the neighborhood is 
submerged in noise and the fitting direction of this region 
is nearly random. And while the neighborhood radius is 
oversized the attractor manifold was also distorted. The 
high dimension of the embedding space helps partly to 
identify neighbors also for rather high noise levels [3, 7]. 
Furthermore, the neighborhood selection algorithm is 
proposed as follows: (i) find a given number K of nearest 
neighbors rather than a neighborhood of fixed radius, (ii) 
define the near neighborhood of the each no overlapping or 
overlapping windows tE u v)9w having P columns 
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YxZ[ZP&&`w;Q of the trajectory matrix rather than the near 
neighborhood of the each point ^Z. The similarity between 
two matrices fE and fx is defined by 

 yEx � 	WzffEd e ffx{	W�fEd e ffE
 e 	Wzffxd e ffx{  (4) 

 

In consequence the defined neighborhood can be 
rewritten into a three-mode format 

     |E u v}9)9w,    (5) 

where the three modes of tensor are neighbors mode (size 
of the neighborhood, i. e. number of neighbors), 
reconstructed phase-space mode (embedding dimension) 
and window mode (window length, i. e. number of vectors 
in the window). Finally, by transpose second and third 
modes, the neighborhood tensor can be defined as 

 |E u v}9w9).     (6) 

In order to perform a decomposition of the 
neighborhood tensors and split the three mode data into 
two orthogonal subspaces –  the signal and noise subspaces  
– the higher order singular value decomposition (HOSVD) 
[11, 12] is used. The HOSVD is preferred over other 
decompositions because it provides an orthonormal basis, 
allowing an extension of the well-known matrix subspace 
technique [11].The HOSVD of a three-way array (6) is 
given by |E � ~E 9 :�E�Q
 9 '�E��
 9 5�E�<
,  (7) 

where ~E u v}9w9) is the core tensor, which satisfies the 
all-orthogonality conditions [10] 

 ~E � |E 9 :�E�Q
d 9 '�E��
d 9 5�E�<
d  (8) 

and �E�Z
 u v��9�� are the unitary matrices of i-mode 
singular vectors for i = 1, 2, 3. In (7) and (8), the notation 
×i corresponds to the scalar product along the ith mode. It 
has been demonstrated in [12] that the estimation of the 
three singular matrices of a given three-mode array  |E u v}9w9) can be performed by the estimation of left 
singular matrices of the three possible unfolding matrices, 
obtained by stacking sub arrays in large matrices 

 �E�Q
 u v}9w)2  �E��
 u vw9)}2 �E�<
 u v)9}w   (9) 

This is to say that these unfolding matrices can be 
decomposed by singular value decomposition (SVD) into 

    �E�Z
 � �E�Z
�E�Z
�E�Z
d.   (10)

The rank of a three-mode array can be defined as WA�s�WQ2 W�2 W<
, composed of the ranks of unfolding 
matrices [11], i.e. WZ � WA�sz�E��
{. Similarly to 2D arrays, 
subspace methods for three-mode arrays are based on a 
rank approximation of the HOSVD. Consider three-mode 
array (6) and its decomposition into two three-mode arrays 

  |E � |E� , |EE,   (11) 

where |E� describes the signal subspace and |EE the 
noise subspace. |E can be expressed in terms of an 
“economy size” HOSVD in the following way [11,12]: 

|�E� � |E 9 :�E��Q
�E��Q
d 9 '�E���
�E��<
d 9 5�E��<
�E��<
d, (12)

where matrices �E��Z
 u v��9�� are obtained by keeping the 
first �Z singular vectors (i = 1, 2, 3), associated with the 
signal subspace. The values �Z are chosen by finding an 
abrupt change of slope in the curves of three-mode singular 
values. Actually, the matrices  

   �� � �E��Z
�E��Z
d    (13) 

are the projectors of the three unfolding matrices. The 
equation (12) operates directly on the measurement data 
and is therefore termed the “direct data approach” [13]. In 
this work, we calculate the signal subspace based on the 
relation between the HOSVD-based subspace estimate and 
the SVD-based subspace estimate in the presence of noise 
[14]. SVD is performed on the matrix�E�<
d u v}w9), 
which contains all vectors of neighborhood stacked along 
the rows 

  �E�<
d � �|E��<
d � �E����d ,  (14)

where �|E��<
 denoted a matrix unfolding of the tensor |E along the 3th mode. Applying the 3-mode unfolding to 
the tensor �E�, that represents the HOSVD-based basis for 
the signal subspace estimate, and taking its transpose, 
authors [13] obtain 

   ��E���<
d � ��E� � ��Q���
�E��<
,  (15) 

i.e. the matrix-based subspace estimate �E��<
 gets 
premultiplied by a Kronecker product of �Q and ��, which 
are the projection matrices (13) onto the subspaces 
spanned be the one-mode and the two-mode vectors of the 
tensor �E�. The signal subspace |�E� defined by matrix 
unfolding of the tensor _|�E�c�<
 along the last dimension 
can be expressed as 

   _|�E�c�<
 � �|E��<
 � ��E� � ��E�d .  (16) 

Given a tensor as matrix object _|�E�c�<
, we can 
rearrange its entries back into a tensor |�E�, i. e. rebuilt the 
original data structure and define the projected trajectory 
matrix for reference matrix of neighborhood. Finally, an 
enhanced one-dimensional signal is created from the new 
space, typically by time-aligning and averaging the 
columns of the trajectory matrix � �d

sX  (see [2] for more 
details). 

Denoising performance analyses from simulated data 
sets  

We had applied the reviewed methods to the denoising 
of an x component of the Rossler system contaminated 
with additive white, Gaussian and independent from signal 
noise. The signals of Rossler system may be used for the 
simulation of some biomedical signals, having a 
pseudoperiodic character. The Rossler system was 
simulated having parameters a=0,398, b=2 and c=4. It has 
been argued that the SVD method can obtain better results 
for pseudoperiodic signals by over-embedding with time 
delay Å=1 [3, 7]. Therefore, the embedding dimension of 
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the reconstructed phase space m=60 (approximately one 
cycle of the attractor) and time delay Å=1 for all signals 
were defined. Ten sequences (each 1000 points) are used 
for evaluating the performance of the denoising at various 
signal-to noise level (SNR). The neighborhood of each 
segment n of trajectory matrix is a three-mode array |E u v<�9Q�9��, that has neighbors mode (the first 30 
nearest neighbors are used for each reference phase 
window), window mode (number of vectors in the window 
– 10), and embedding mode (embedding dimension – 60), 
which by over-embedding at Å=1 play role of temporally 
mode. After looking at several combinations of three-mode 
ranks for the HOSVD subspace method, we have chosen 
one with rank(2, 2, 2). In the following, we compared 
multiway tensor data denoising HOSVD method with its 
matrix-based SVD counterpart, where neighborhood 
matrix �E u v}ew9) contains all K transposed neighbors 
matrixes �E& u vw9) concatenated along the rows. In kind 
of criterion evaluating the performance of the denoising of 
the signals the relative mean square error (MSE) Æ between 
the normalized original signal x and estimated signal K� is 
used 

 q � oK � K�o�oKo� 2 (17) 

where o�o is the Euclidean norm. Data processing and time 
and frequency analyses were performed using software 
written in Matlab (The MathWorks, Natick, MA).  

Fig. 1 shows the difference between the results obtained 
with the traditional local subspace approach and with the 
HOSVD local subspace approach. We can see that the 
HOSVD local subspace approach would lead to a smoother 
wave form without high-frequency distortions than that of 
the traditional local subspace approach. 

 
Fig. 1. Denoised signals of Rossler system at SNR=0dB: a) with 
traditional local subspace method, b) with the HOSVD local 
subspace method 

Fig. 2 shows the averaged relative-mean-square errors 
between the original and denoised signals for HOSVD 
based technique applied to the neighborhood tensor and for 

SVD applied on highly structured neighborhood matrix 
versus white Gaussian noise level. 

 
 

Fig. 2. The averaged relative-mean-square error versus white 
Gaussian noise level for denoising the signals of Rossler system 
with the HOSVD and SVD subspace methods 

Fig. 3 shows the pulmonary arterial pressure signal 
contaminated with 5 dB additive white Gaussian noise and 
denoised signal with the proposed HOSVD based 
approach. 

 
Fig. 3. Pulmonary Arterial Pressure signal, a) the raw data 
contaminated with 5 dB additive white Gaussian noise, b) target 
and denoised signals with the proposed approach 

Conclusions 

A simulation involving the synthetic and real 
biomedical signals shows the efficiency, in terms of noise 
reduction, of the proposed local projection noise reduction 
approach based on three-mode model of neighborhood 
compared to the well know local projection approach. 
Furthermore, for one dimensional signal, signal subspace 
estimated through the HOSVD of neighborhood tensors |E u v}9w9) approximately yields the same result as the 
signal subspace estimated by the applying a SVD on large 
neighborhood matrixes �E u v}ew9), containing all K 
neighbors �E& u vew9) concatenated along the rows. But 
tensor-based approach in comparison with the matrix 
approach is more robust to changes in numbers of singular 
vectors, where formed the signal subspace. The 
computational complexity of algorithms based on three-
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mode model of neighborhood and on highly structured 
neighborhood matrix is significantly higher than the 
traditional local subspace approach. Largely the 
computational time is defined by size of neighbor matrixes. 
Therefore, the number of consecutive vectors p can’t be 
too large, but approximately not less 10 – otherwise these 
approaches would degrade to the traditional local subspace 
approach.  
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In this research, an improved local projection noise reduction approach with three-mode model of neighborhood is proposed. Firstly, 
one dimensional time series are embedded into a high dimensional phase space. Secondly, the neighborhood tensor of each reference no 
overlapping window with several consecutive vectors of reconstructed phase-space is computed rather than neighborhood matrix of each 
separate vector. Lastly, with the suggested model a higher order singular value decomposition (HOSVD) is performed on the 
neighborhood tensors to split the three mode data into two orthogonal subspaces: the signal and noise subspaces. Throughout the 
experiment, the effectiveness of the proposed method is validated with a noisy simulated data – the x component of Rossler system and 
real biomedical signal contaminated with additive white Gaussian noise. Ill. 3, bibl. 14 (in English; abstracts in English and Lithuanian). 
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Remiantis trima�iu artimiausiQ kaimynQ modeliu, tiriamas signalQ išskyrimo triukšmQ fone lokalios fazin/s erdv/s metodas. VisQ 
pirma rekonstruojama vienmat/s laikin/s eilut/s daugiamat/ fazin/ erdv/. Toliau vietoj kiekvienam atraminiam rekonstruotos fazin/s 
erdv/s vektoriui artimiausiQ kaimynQ matricos iš keliQ gretimQ rekonstruotos fazin/s erdv/s vektoriQ nustatomas kiekvienam 
neužklojamam langui artimiausiQ kaimynQ tenzorius. Remiantis sudarytu modeliu, atliekama kaimynQ tenzoriaus aukštesniojo laipsnio 
singuliariniQ reikšmiQ dekompozicija, po kurios trima�iai duomenys padalijami � dvi ortogonalias suberdves: signalo ir triukšmQ. 
Metodo efektyvumas tiriamas išskiriant iš adityviojo baltojo Gauso triukšmo chaotin� Rosslerio signal�, taip pat realQ biomedicinin� 
signal�. Il. 3, bibl. 14 (anglQ kalba; santraukos anglQ ir lietuviQ k.). 




