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Introduction

This paper presents the framework that is 
combination Bayesian networks and fault detection that all 
of them learning a behavior of the robot. Fault removing is 
performed by changing the Bayesian network structure 
using interpreted evidences from robot sensors. Both 
simulation and real robot show that these frameworks can 
perform door crossing behavior properly by using prior 
knowledge and sensors data and it is robust to the changing 
of map.

The motivation for this research comes from the need 
for an Instrument Fault Detection and Isolation (IFDI)
method that is applicable to robotics. 
We apply Bayesian network to the task of fault diagnosis 
in a complex behavior of mobile robot like door crossing. 
Bayesian networks have important features such as 
representing direct causal dependency and ability to imitate 
thinking like human.

Review of approaches

Analytical redundancy [1] is one approach based on 
residual generation. The residual can be computed through 
comparison of the measurements of sensors and expected 
values provided analytically by models.

Model-based method is another method used in 
diagnosis for systems such as electro-mechanical ones.
These methods use analytical redundancy to reduce cost
for adding extra sensors. This idea was introduced in 1970s 
[2–3] and has been shown to be successful in a wide 
variety of applications [4].

The literature is not rich when it comes to the 
application of Bayesian networks for fault detection and 
diagnosis. Aradhye [5] used Bayesian networks for both 
detection and identification of sensor faults too. Aradhye 
used dynamic Bayesian network (DBN) and Bayesian 
networks for IFDI for dynamic systems and systems under 
steady state conditions. He proposed a scheme for FDI in 
dynamic system using continuous node Bayesian network.
The use of continuous nodes in a BN needs the process 
model to be linear. Mehranbod et al. [6] proposed a BN 

model with discredited nodes and showed that this model 
did not require the unrealistic one to one cause-effect 
mappings. In their work, the BN is used to progress a
multi-sensor model for all sensors in the process under 
consideration.

This paper shows how Bayesian network can be 
effective when it is part of a framework that includes 
behavior-based diagnostics. Furthermore, this paper 
presents a new structure for determining dynamic fault 
probabilities based on raw sensor data and behavior of 
robot. This is accomplished by using a Bayesian network 
to interpret evidence.

Bayesian networks structure

Bayesian networks are directed acyclic graphs 
(DAG), where each node would have discrete or 
continuous values corresponding to random variables. A
Bayesian network shows the exponentially sized Joint 
Probability Distribution (JPD) in a compact manner. Each 
probability in the JPD can be computed from the 
information in BN by the chain rule (1)
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Proposed method

In this section, at first a Bayesian network for 
implementing the door crossing behavior of a mobile robot 
is introduced. This framework is adapted from [7]; 
however, as it is unable to detect and tolerate sensor faults, 
a new BN framework able to detect sensor fault and 
continue corrected behavior in the presence of sensor 
malfunction is introduced. The goal is to train robot to 
learn door crossing behavior without collision with walls 
of the room. Robot receives an error when it cannot cross a 
door in specified time intervals.  Two types of error are 
recognized: lost or collision.  Robot is lost when it cannot 
pass the door in specified time. Collision takes place every 
time the robot hits the walls.

We adapt the Bayesian network model proposed by 
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Lazkano et al. [7] for our door crossing behavior. As 
shown in Fig. 1, this model assumes that the network 
structure is determined by an expert.  In this figure, 
evidence from 13 ultrasonic sensors labeled S1 to S13, are
used to determine an action (C) of the robot. Any action 
has three states: turn left, turn right and go straight. 
Fig. 1 shows that each node is linked to its immediate 
neighbor. The three actions of robot are computed based 
on (2):
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The speeds of left and right wheels of the robot are 
computed using (3):

1 0.5* ( ) ( ( 1)

( ))*0.1,
1 0.5* ( ) ( ( 1)

( ))*0.1.

left

right

V action t action t

action t
V action t action t

action t

         (3)               

Where the action has three values to show the sign of 
the rotational speed of the robot: negative, positive, and 
null rotational velocities.

In door crossing behavior, the current action of robot 
is effected by the previous action. Therefore, this research 
modifies Bayesian networks structure into a Dynamic 
Bayesian Network. A DBN is implemented according to 
Fig. 2 to implement this behavior. The arcs are included to 
make the relationship between actions at two time steps.

The action of robot is computed from (4) using sensor 
values:
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Fig. 1. Bayesian network structure for door crossing behavior

Fig. 2. A DBN for door crossing behavior

A fault tolerant BN framework

In this section we propose a Fault Tolerant BN model 
(FTBN) that can perform the desired action in the 
environment with faulty sensors. The proposed method is 
able to work properly by detecting the fault and removing 
its effects on the performance of the mobile robot. 

Fig. 3. Proposed structure (FTBN)

The proposed BN framework is shown in Fig. 3. This 
network includes four separate BNs: Action model 
network, Fault detection network, Door detection network 
and Diagnosis network. 

Action part is similar to the network shown in Fig. 1. 
It determines the action of robot among three possible 
actions (rotate left, rotate right and go straight).
The door detection network detects the desired door based 
on the training data and sensor values. 

Diagnosis network fuses the door detection network 
and the fault detection one. It is used to recognize the 
faulty sensor and to change the structure of action network 
based on this identification. 

Action model structure

We use the same structure as shown in Fig. 1 for 
training the actions of robot. 

The training data is collected with a series of actions 
in 1925 different trajectories for door crossing. The robot 
reaction is learned using (2).

Fault detection network structure

Any fault occurring in robot sensors would make 
sensor value different from its expected value. We use a 
simple model of environment to predict unreliable data 
from sensors. The environment which is sensed by 3 
adjacent sensors is modeled by a piecewise line segment as 
shown in Fig. 4.

The value of a sensor such as sensor b can be verified 
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by using the other two sensors. It is considered as a valid 
data, provided it is on the line connecting the other two 
sensor data. 

We use a Gaussian function to determine the 
probability of the 2 belonging to the line. This probability 
is calculated from the distance between the sensor value 
and prediction value. The mean of the Gaussian function 
( ) is the predicted value and its variance ( 2 ) is the 
measured sensor variance. We use this Gaussian function 
to measure the difference between the sensor value and the 
prediction value, and then, set up the probability related to 
this difference. This probability is compared with a 
threshold to determine the fault.

This structure will fail when the faulty sensor is in 
front of a door or discontinuity of the walls. For solving 
this problem, a separate Bayesian network is used for door 
detection. If robot detects a door with this network, then 
the sensor value is not considered as a fault. 

Fig. 4. Piecewise modeling of the environment

Door detection network structure

The door detection network structure is given in Fig. 
5.

Fig. 5. Door detection network structure

It applies sonar readings to detect the door. This 
network produces a probability value for every sensor. 
This value shows the probability of that sensor being in 
front of the middle of the door. This network selects one of 
the sensors based on the maximum likelihood of being the 
nearest sensor to the door. The output from this network is 
used for diagnosis network.

Diagnosis network structure

After diagnosis of a faulty sensor, the action structure 

is changed to eliminate faulty sensor node and its arcs and
CPD of the action structure is refreshed.   For instance, if 
we assume that S4 sensor was faulty, then the modified 
structure after elimination would be as shown in Fig. 6. 

.

Fig. 6. Action structure after faulty sensor elimination.

Using this graph ),|( 43 SCSP has to change to 
because S4 is eliminated. For example, suppose that S3, 

S4, C have CPD values according to Table 1.

Table 1. Probability table of P(S3|C, S4)
P(S3|C,S4) C=0,S4=0 C=0,S4=1 C=1,S4=0 C=1,S4=0
S3=0 0.95 0.85 0.65 0.4
S3=1 0.05 0.15 0.35 0.6

After S4 is removed, this table will change to the 
CPD of Table 2.

Table 2. Probability table of P(S3|C)
P(S3|C) C=0 C=1
S3=0 (0.95+0.85)/2=0.9 (0.65+0.4)/2=0.525
S3=1 (0.05+0.15)/2=0.1 (0.35+0.6)/2=0.475

Value of every cell in Table 2 is calculated from two 
columns in table 1 that have the same C values. As sum of 
columns in CPD table must be 1 thus, every cell is divided 
to 2.

Experimental results 

Two separate experiments have been done to verify 
the proposed method.  The first sets of experiments have 
been conducted in MATLAB simulation environment by 
using a simulated robot and simulated sonar data. The 
second experiment has been conducted by using a real 
differential drive robot and data from a rotary laser 
scanner.

The purpose of the experiments is to show that our 
proposed model can learn the complex behavior in
different environments with faulty sensors.

Simulation environment 

A simulated robot is located in the environment that 
consists of a room with 4 walls and an open door. Fig. 7
shows the environment used for training the BN.
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Fig. 7. The simulated environment including robot, door and 
walls (Map1)

For collecting the training data and learning the 
action, the robot is driven to different points of the
environment with different directions. For each of the 
points and directions, the action is selected by the 
supervisor based on the difference between direction of the 
robot and the middle of the door.

For training the Bayesian network, 75000 entries
were used. Each entry included an action and readings for 
13 sonar sensors. The sonar values more than 3meters were 
truncated. 20 discrete values were collected for each sonar 
sensor. The door was supposed to be completely open 
during the experiments.

The robot was expected to follow the shortest path 
and cross the door without collision with walls. The initial 
position and direction of the robot were selected arbitrarily 
with a direction ranging from 0 to 180 degrees. Robot 
received an error penalty when it could not cross a door on 
specified time range or it collided to the wall.  

The robot was guided to cross the door using 
Bayesian network of Fig. 1 and Dynamic Bayesian 
network of Fig. 2. In first experiment, the sensors were 
supposed to work without any fault, and in the other 
experiment, one of the sensors were randomly selected to 
be faulty and produce random values in each path. Fig. 8
compares the performance of BN and DBN networks in 
these experiments.

This figure shows the total error penalty gained by
robot when it starts from different initial directions at 
different starting points. Experimental results depict that, 
in the first experiment which sensors are without fault, 
both BN and DBN structures work well, with error being 
less than 9%. It also shows that in the initial angles, which 
many sensors can sense the door (such as 60, 90, and 120),
the DBN structure has better performance. 

To show the performance of the proposed model 
when there is a sensor fault in mobile robot, we repeated 
the experiment on map1 using FTBN. Fig. 9 shows the 
result for FTBN and compares it with BN and DBN 
results. The proposed model has better performance than 
both methods in the presence of fault. The results show 
that the proposed structure is robust against fault and
decreases errors of behavior from 21% down to 13%.

To show the learning ability of the proposed method, it 
was experimented on different maps of Fig.10, while it was 
trained using only data from map1. Fig.11 shows that 
FTBN can guide the robot in unseen environment with an 
acceptable accuracy. 

The results show that the average error for unseen maps 
is larger than the trained map; but, it is almost the same for 
different maps except map 4 in which, the location of the 
door has been extremely changed. 
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Fig. 8. Comparison of two different networks (BN and DBN) for 
door crossing behavior on map1 with presence of fault and absent 
of fault
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Fig. 10. Different maps to test the proposed method. a) Map2, b)
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Fig. 11. Errors of new proposed structure (FTBN) on a) Map1, 
b) Map2, c) Map3, d) Map4, e) Map5, f) Map6

Sourena robot 

The Sourena robot which is shown in Fig.12 is a 3-
wheeled differential drive robot. The base has a size of 
35cm x 60cm x 40cm and the total height of robot is 
150cm. The robot is located inside a 5m x 6m room with 
an 80cm open door. The robot is equipped with a rotary 
laser scanner which can scan the environment 5 times per 
second. The resolution of sampling was reduced to 15 
degrees to make it comparable with the sonar data used in 
the simulation.  

Fig. 12.  Sourena robot

For training the proposed FTBN framework, 500
entries were used. Each entry includes an action and
readings for 13 sensors value.

For testing the proposed FTBN framework, the robot 
was located at 100 different starting positions in the room 
with arbitrary directions. The robot could cross the door in 
82 test runs successfully. The same experiment was 
repeated by using BN structure for robot guidance, that 
caused 73 successful door crossing behavior. This 
experiment also showed the superiority of FTBN to the 
conventional BN.

Conclusions 

In this work, a new Bayesian network has been 
successfully applied for door-crossing behavior in robotic 
domain with faulty sensors. We proposed a new structure 
for simultaneous performing of the behavior as well as 
detecting of the fault. 

The performance of new proposed real-time method 
has been tested successfully. Using this method, the robot 
can be trained in an environment without fault, and then 
can be used in a real environment in which fault might 
occur in the sensors. By using this method, the influence of 
sensor fault on the behavior of the robot extremely 
decreases.

In future works, we will apply this method to more 
complex and realistic problems like avoiding moving 
obstacles.
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