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Introduction

In recent years so many studies have been carried out
on electromagnet suspension systems [1–5]. Performance
requirements for electromagnet suspension systems include
comfort and suspension deflection. However, these
requirements are often conflicting, and a compromise of
the requirements must be reached. To this end, a
considerable amount of research has been carried out [5].

The goal of designing a feedback linearization for a
double magnetic suspension system is to suspend the
effects of an object in a certain distance from a magnetic
rail by using two electromagnets. The advantage of the
suggested method over the work done by [3] is that their
presented decoupled controller shows, but here the
problem solved without decoupling the performance of
their proposed method have been decreased. However the
current work will solve the mentioned problems and
improves their method.

System Modelling

The basic idea for designing such trains is the magnetic
suspension. As shown in Fig. 1, in a single suspension
system, the mass is under the influence of two forces: the
gravity and the magnetic force. In the case of passenger
trains, a different type of suspension system is used (Fig.
2). according to respective controlled object. The coupling
between the two groups of electromagnets is regarded as
disturbance and suppressed by enhancing the robustness of
individual controllers. However, this method cannot
actively overcome the uncertainty issues, and the control
performance is not desirable especially in the presence of
external disturbances.

DEM (Double Electro-Magnet) has five degrees of
freedom in movement: heave, sway, pitch, roll and yaw.
Among them, only heave and pitch are to be controlled.
Hence the system in this case has two degrees of freedom.

Fig. 1. Magnetic suspension system

Variable Parameters. In hand Variable parameters in
the problem are: the mass of the object (m) and the
inductance of the coil of the electromagnets (k).

Fig. 2. The structure of the suspension system
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Structure of the System. The structure of DEM shown
in Fig. 2 includes two identical electromagnets connected
by a rigid bracket. The magnets 1 and 2 provide the
suspension forces needed for points 1 and 2, respectively.
The suspended object can be considered as a solid object
with two electromagnets. Furthermore, two sensors are
used to measure the states of the suspension and two poises
can be used to provide load forces.

DEM can be simplified as shown in Fig. 3. Parameters
of the system are defined as follows: m is the mass of the
suspended object, I is the spinning inertia in the center of
the object O , and 2F are magnetic forces, 1N and 2N are
load forces on the two ends of the bracket, d is the
distance of the center of the object from the rail and 1 and

2 are the distance from the points where 1F and 2F are
applied, respectively. 1d and 2d are the distance between
the solid object and the corresponding points on the rail. l
is the distance between the center of the object O and the
point where magnetic forces are applied and finally, L is
the distance between the center of the object and the point
where load forces are applied.

Fig. 3. Details of suspension system

Simplifying Assumptions:
The stiffness of the rail is infinite and only the
movement of the DEM relative to the rail is to be
considered.
The leakage flux, edge effect of the magnetic force,
magnetic resistance of the core and the rail are
negligible.
A weight center is considered for the weight of the
object. The weight of the two magnets are assumed to
be identical; therefore, the total weight of the bracket
and the magnets can be represented by a weight
center, O, depicted in Fig. 3.
The lengths of the magnets are very short and the
points where the forces are applied are fixed.
Load forces, created by the poises, have only one
downward component.

DEM suspension system is a complex system including
mechanical dynamics of DEM, relation between the
current and the electromagnetic force and relation between
the voltage and the current.

Mechanical- Dynamic Equations. As mentioned before,
DEM has five degrees of freedom for movement: heave,
sway, pitch, roll and yaw. For the controller, only heave
and pitch movements are taken into account, namely,

vertical movement of weight center O and the twisting
movements around the main rotation pivot. The positive
directions of movements and rotation are considered
downward and counter-clockwise respectively. According
to the principle of force transfer and the Newton’s second
law, the mechanical dynamics equations can be achived
[2]. Let us select the state of the system as follows
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In the following investigation all parameters of the
system are assumed to be unknown. The case in which the
exact values of some parameters of the system are not
known is to be investigated. In this paper a linearizing
feedback is proposed. The introduced feedback is very
useful in designing the control law.

Feedback Linearization

Dynamic equations for the suspended system are stated by
equation (2). According to nonlinear systems theory, the
number of derivatives needed to take from the output in
order to get the input is called “Relative Degree” of the
system. If the relative degree of the system is more than
the system degree itself, the proposed method can not be
used, and otherwise the system is “Completely
Linearizable”. To simplify calculations, the following
operators are defined:

1 ( )i i
f x fL h L h f x , (6)
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1 1i i
g f x fL L h L h G , (7)

( )f xL h h f x . (8)

According to the above equations and explanation, the
i’th derivative of the output is

() 1 , 0 2, ,1i i i j
f g f g fy Lh LLh uLLh for j i . (9)

With a glance at above equation, for attaining the input
we must carry on derivations till the time we get

1 0i
g fL L h .

Detailed information on the topic is described by [6].
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Having taken the first derivative from the output, we
gain

xy h x . (12)

By using the equations (6-11), then
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It’s evidently visible that the input doesn’t show up in
the first derivation from the output. Thus the derivation
should be repeated accordingly. Therefore

xy x . (14)

By using equations (6-11) we can write:
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The input doses not show up either this time.
Therefore, derivation should be repeated once more
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It is worth noting that the system relative degree is
three, therefore, it can be completely linearized. Now, if
we consider the control input as following, then we would
have a linear system
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Considering such a control input leads to the following
dynamic equation for the system

y . (20)

Now, suppose that the new control input is defined as:

1 2 3 ,dy k e k e k e ,

where de y y .
(21)

Then, the dynamic equation would be

1 2 3 0,e k e k e k e (22)

where de y y .
Here, if the coefficients 1k , 2k and 3k are selected so

that the polynomial 3 2
1 2 3s k s k s k is Heurwitz, then

error would approach zero as t goes to infinity.For
instance, we consider the coefficients 1k  ، 2k and 3k as
follow:
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Therefore, dynamic equation will be
2

1 2 0s s e . (24)
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Simulation and Results

Tracking a path. To show tracking capability of the
proposed method, a path, as shown in Fig. 4, is considered.
The coefficients 1k , 2k and 3k are selected equal to 7, 6

and 12, respectively. As shown in Fig (4), we use 2
fL h to

gain the value of y .

Fig. 4. Assumed reference value for tracking problem

Fig. 5 shows the performance of the system while
applying the above input. The figure depicts that the
proposed method is capable of tracking the input very well.

Fig. 5. The response of system in tracking purposed reference
value

As mentioned in the modeling part, the parameters kA ,

kB , kC and kD are dependent on the mass value. Thus
any changes in the mass of the plate lead to changes in
these parameters.

The proposed method 2
fL h which is used to distinguish

the value of y compensates the effects of mass changes.
Note that, parameters kA , kB , kC and kD are sufficient

in finding the values of 3
fL h and 2

g fL L h . Even though
both of these values are used to distinguish the control
input, there’s no need to correct these values according to
the new mass value.

Compared with other introduced methods in the
literature that needs correction of the parameters of the
mass changes in the equations, in our proposed method
there is no need for the correction. Correction of the
parameters due to the mass changes requires a large
amount of computational burden that prevents us from real
time implementation of the control strategy. Note that in

the proposed method, the correction of the value of mass in
2
fL h function is only needed. Now the system is simulated

under the new condition, in which, the path is the same as
before and some mass changes are applied:

a) The value of mass parameter in 2
fL h function, not

being corrected;
b) The value of mass parameter in 2

fL h function, being
corrected.

As it’s been depicted in Fig. 7, when value of mass
parameter in function 2

fL h is not corrected, the response
of the system could not trace the reference value. Tracking
wouldn’t take place completely, even if big values are
selected for parameters 1k , 2k and 3k .

For instance, we set 1 2 370, 1600, 12000k k k
which is related to the case that the dynamic poles of the
error system are fixed in 20, 20 and 30. As shown in Fig. 6.
although the mass varies, the output of the system is able
to track the reference value. Note that, correction is made
only on 2

fL h function.

Fig. 6. Assumed mass changes

Fig. 7. The response of the system in assumed reference value
tracking problem, considering mass changes

As mentioned earlier, in this case  the tracking would
be complete, even with considering small values for
parameters 1k , 2k and 3k . For instance we set

1 2 37, 16, 12k k k . The simulation result is shown in
Fig. 8.

The effects of ball mass changes. None of the
parameters of the system are changed as the mass of the
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ball changes but the value of 2
fL h function changes

directly. Here, since the effects of two balls are the same,
only the effects of the mass changes on one of the balls are
considered.

Fig. 8. The response of the system in assumed reference value
tracking problem, considering mass changes

When the mass changes of the ball in finding the value
of 2

fL h function is considered, there would be a complete
tracking. But if such changes weren’t taken into account,
tracking wouldn’t be complete even by estimating big
values for parameters 1k , 2k and 3k . To show this, two
states are considered:

When the value of the ball mass changes is not
considered in finding the value of 2

fL h function;
When the value of the ball mass changes is
considered in finding the value of 2

fL h function.
Fig. 9 shows the mass changes in one of the balls.

Figures 10 and 11 show the response of the system with
and without considering the ball mass changes,
respectively.

It should be noted that, practically, this assumed
situation may not occur. This condition is considered just
to show the capabilities of the control algorithm.

Fig. 9. Changes of mass

Including Disturbance in Input. Consider two random
signals with homogenous distributions as input
disturbance. Estimate the disturbance amplitude between -
0.5 and 0.5. To decrease the effects of input disturbance,
the values of parameters 1k , 2k and 3k must be large
numbers. Here, we select these parameters as

1 2 335, 400, 1500k k k . The plate is supposed to be

in its balance point: 1 2, 0.004,0.006T Td d . In this
control method, when noise relative to signal is increased,
the system meets instability limits. Fig. 12 shows the
output of the system in presence of input noise.

Fig. 10. The response of the system in presence of mass changes

Fig. 11. The response of the system in presence of mass changes

Fig. 12. The response of the system in presence of input noise

Including Noise in Output. The assumed system is
severely sensitive toward measurement noise. As
mentioned before, for high amplitude noises, system
oscillates. So that the output might be lost in a noise signal.
In order to decrease the noise effects, values of
parameters 1k , 2k and 3k must be selected in large
numbers. In this part, noise signal amplitude is estimated
as 0.0001. Also values of parameters are taken as

1 2 335, 400, 1500k k k . To compare the results with
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the last chapter, suppose that the plate is placed on its
balance point; 1 2, 0.004,0.006T Td d . The reference
signal is similar to that of Fig. 4. Fig. 5 shows the output of
the system in presence of measurement noise. Note that,
measurement noise cause incomplete tracking. Even
though large numbers are selected for parameters 1k , 2k
and 3k values. Of course it should be mentioned that
assumed measurement noise relative to the output signals
is considerable.

Fig. 13. the response of the system in presence of measurement
noise

Conclusions

As mentioned earlier, this paper is presented in order to
improve the work of De-Sheng and Jun Z., [3]. The system
is severely sensitive toward the measurement noises. Such
noises make it impossible to have a complete tracking. On
the other hand, choosing large values for parameters 1k ,

2k and 3k leads the system to considerably make up for
the measurement noise and input noise effects. It also
shows robustness against the presence of measurement

noises which is the case in the considered plant where all
sensors collect noise from the environment.

Accurate information about the plate mass changes
and injecting such information into y function can
overcome the effects of mass changes so that there would
be no need to enter such effects in 3

fL h and 2
g fL L h

functions.

References

1. Becerril–Arreola R. Nonlinear control design for a magnetic
levitation system // Master’s thesis, Dept. of Electrical
Engineering, University of Toronto. – 10 Kings’s College
Road, Toronto, Ontario, 2003.

2. Barzamini R., Talebi H. A., Yazdizadeh A. R., Eliasi H. A
New Adaptive Control of a Double–electromagnet
Suspension System // Journal of Applied Science, 2009. –
No. 7. – P. 1201–1214.

3. De–Sheng L., Jie L., Kun Z. Design of nonlinear
decoupling controller for double–electromagnet suspension
system // Acta Automatica Sinica, 2006. – No. 32. – P. 321–
328.

4. Pukėnas K. Nonlinear Detection of Weak Pseudoperiodic
Signals hidden under the Noise Floor // Electronics and
Electrical Engineering. – Kaunas: Technologija, 2010. – No.
4(100). – P. 77–80.

5. Wai R. J., Le J. D. Backstepping–based levitation control
design for linear magnetic levitation rail system // IET
Control Theory and Appl., 2008. – Vol. 2. – No.1. – P. 72–
86.

6. Khalil H. K. Nonlinear Systems: 3rd ed. – Prentice–Hall
Inc., Upper Saddle River, New Jersey, 2002.

7. Poška A. J., Savickienė Z., Šlepikas. A. Control and
Adjustment of Linear Induction Motor Starting Force //
Electronics and Electrical Engineering. – Kaunas:
Technologija, 2010. – No. 2(98). – P. 21–24.

Received 2010 10 20

A. Maghsoudlou, R. Barzamini, K. D. Farahani. Nonlinear Control based on Feedback Linearization for Double-
Electromagnet Suspension System // Electronics and Electrical Engineering. – Kaunas: Technologija, 2011. – No. 2(108). – P. 85–
90.

In this paper a feedback linearization control for double electromagnet suspension system is presented that addresses the coupling
effects between two groups of electromagnetic trains. The controller has been developed based on feedback linearization and some
reasonable assumptions of nonlinear mathematical rules. The proposed method in tracking has a satisfying performance in presence of
unknown changes in the mass. It also shows robustness against the presence of measurement noises because sensors in plant collect
noise from the environment. The simulation results show the capability of the proposed algorithm in the presence of input and output
perturbation. Ill. 13, bibl. 7 (in English; abstracts in English and Lithuanian).

A. Maghsoudlou, R. Barzamini, K. D. Farahani. Dvigubos elektromagnetinės stabdymo sistemos grįžtamo ryšio linearizavimo
netiesinėje kontrolėje taikymas // Elektronika ir elektrotechnika. – Kaunas: Technologija, 2011. – Nr. 2(108). – P. 85–90.

Pateiktas dvigubos elektromagnetinės stabdymo sistemos grįžtamo ryšio linearizavimo netiesinėje kontrolėje taikymas. Remiantis
grįžtamo ryšio linearizavimu ir matematinėmis išraiškomis sudarytas valdiklis. Il. 13, bibl. 7 (anglų kalba; santraukos anglų ir lietuvių
k.).




