
ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 22, NO. 2, 2016

1Abstract—FPGA implementation of hyperbolic tangent
activation function for multilayer perceptron structure seems
attractive; however, there is a lack of preliminary results on the
choice of memory size particularly, when LUT of the function is
stored in dedicated on-chip block RAM. The aim of this
investigation was to get insights on the distortions of the
selected neuron model output by the evaluation of transfer
function RMS error and neuron output signal mean and
maximum errors while changing the gain and memory size of
the activation function. Thus, the range addressable activation
function for the second order normalized lattice-ladder neuron
was implemented in Artix-7 FPGA. Various gain and memory
constrains were investigated. The increase of LUT memory size
and gain yielded smaller error of output signal and nonlinear
influence on the transfer function. 2 kB of BRAM is sufficient
to achieve tolerable less than 0.4 % maximum error utilizing
only 0.36 % of total on-chip block memory.

Index Terms—Lattice-ladder neuron;, nonlinear activation
function; transfer function; high-level synthesis; fixed-point
arithmetic; FPGA implementation.

I. INTRODUCTION

Artificial neural network implementation in FPGA is
attractive because of the hardware parallel and periodical
structure, fast reconfigurability, hundreds of dedicated DSP
and memory slices, convenient high-level synthesis tools [1].
The basic building blocks that are necessary for FPGA
implementation of artificial neuron are adder, multiplier and
nonlinear function that is hardware unfavourable.

The neuron activation functions such as sigmoid [2],
logarithmic sigmoid [3] or hyperbolic tangent [4] are mostly
used in the artificial neural networks. Such functions have
easily obtainable derivative, which is important for training
process, because that decreases the computational load.
However, the precise implementation of the nonlinearity in
FPGA gives cause for concern. The reasonable solutions
while solving this issue can be combinational [5], [6],
piecewise linear (PWL) [7], [8] or quadratic (PWQ)
approximations [2], [9], look-up tables (LUT) synthesized in
a logic [10], [11] or stored in on-chip memory [4]. The
straightforward implementation of nonlinear function in
hardware is not a correct approach, because both
exponentiation and division operations are logic and
arithmetic resource hungry [5], [11]. CORDIC algorithm

Manuscript received 5 January, 2015; accepted September 12, 2015.

introduces latency and has limited input domain [8].
Efficient FPGA implementation of activation function is a

multi-criteria task. The balancing of the accuracy, resources
and processing speed must be considered [8]. High precision
implementation requires more resources. Signal routing
through high amount of logic is a bottleneck to achieve
higher clock frequency for the synthesized design, due to the
growing delay in a critical path of not compact hardware.
Moreover, resource reduction makes circuit faster, but also
influences inaccuracy in approximated activation function.

When only few bits are used as the input of activation
function, then it makes sense to use combinational
approximation based on direct bit level mapping without
arithmetic operators. It is shown in [5] that with 6 bits
precision the maximal absolute error of the activation
function is less than 1 %.

The polynomial approximation methods are based on the
function input range division into equal parts, where each
function subinterval is approximated by line or curve [8].
The PWL approximation of hyperbolic tangent with
256 linear sections provides a maximum error of 0.002 %
using 32 bit arithmetic [7]. The controlled accuracy second
order approximation of sigmoid function was implemented
on single DSP slice with maximum allowable 1 % error [9].
The amount of additional logic resources depends on the
required word-length and error. The PWQ approximation
can be implemented by reusing already utilized multiplier
and adder units in neuron block proposed in [2]. The main
disadvantage of polynomial approximation technique is the
increased latency due to the growing number of
multiplication operations for the higher-order polynomial.
The maximum allowable 2 % error with 9 bit input is
achieved using hybrid PWL and LUT methods in [12]
implementing hyperbolic tangent function in hardware.

The LUT-based approach works much faster than
polynomial approximation, since LUT consumes memory.
Small LUT is usually implemented in distributed memory,
which does not require delay units, but has a limited size [4].
Newest FPGA chips have at least 0.5 MB of on-chip block
RAM (BRAM) with one clock cycle latency to access stored
data [13]. Therefore, large LUT is generally stored in
BRAM. The accuracy of approximated hyperbolic tangent
under various precision input signal and LUT size was
investigated in [11]. Depending on the application and
required accuracy for the activation function, different sizes

FPGA Implementation of Range Addressable
Activation Function for Lattice-Ladder Neuron

Tomyslav Sledevic1, Dalius Navakauskas1

1Department of Electronic Systems, Vilnius Gediminas Technical University,
Naugarduko St. 41–422, LT-03227 Vilnius, Lithuania

tomyslav.sledevic@vgtu.lt

http://dx.doi.org/10.5755/j01.eie.22.2.14598

92

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 22, NO. 2, 2016

LUTs (from 28 samples [10] to 215 samples [4]) are used.
This paper presents FPGA implementation of range

addressable LUT approximation of hyperbolic tangent
function. Using nowadays FPGA there is not much concern
about memory, therefore LUT stored in BRAM is preferred
in our implementation. In Section II the implementation of
lattice-ladder neuron (LLN) and its activation function are
presented. In Section III the error estimation parameters are
described in details. In Section IV results on experimental
investigation of created LLN working under different LUT
size and output gain are summarized. General conclusions
are stated in Section V.

II. IMPLEMENTATION OF LATTICE-LADDER NEURON AND ITS
NONLINEAR ACTIVATION FUNCTION

The hardware implementation of lattice-ladder neuron
[14] with on-chip training circuit and linear activation
function was presented in [15]. The normalized lattice
outperforms other IIR structures due to the stability.
However, it requires four multiplication operations in each
section and 11 multiplications in total for the second order
LLN. The output of the second order LLN can be expressed

2
out

0
() () ,j j

j
s n g v b n

 (1)

when local flow of information in the lattice part for all j
sections (see Fig. 1) is defined by:

1
1

1

()() cos sin
,

() sin cos ()

jj j j

j j j j

f nf n

b n z b n

(2)

with initial and boundary conditions b0(n) = f0(n) and
f2(n) = sin(n), where sin(n) – input signal; vj – weight of the
ladder; Θj – rotation angle of the lattice; fj(n) and bj(n) –
forward and backward signals of the lattice correspondingly;
Φ{∙} – hyperbolic tangent as neuron activation function; g –
amplification coefficient.

Fig. 1. The structure of the second order lattice-ladder neuron.

The hyperbolic tangent function is defined as follows

2.03 ()

2.03 ()
1() ,
1

gs n

gs n
es n
e

(3)

where () ()s n gs n is the input of activation function.
The proposed neuron activation function is divided in

three regions (see Fig. 2): pass, processing and saturation. In

a pass region Φ ≡ s, the signal s(n) is directly transferred to
the output sout(n). The processing region of the function Φ(s)
is implemented in LUT and stored in BRAM. In a saturation
region, the LLN output is always Φ ≡ 1.

Fig. 2. The plot of the proposed activation function.

To make the smoothed junction between the pass and
processing regions, the exponent value is set to 2.03 instead
of original 2. The approximated LLN output can be
expressed

out

1, () 16,
() , 16 () 1,

() (), 1 () 1,
() , 16 () 1,

1, () 16.

s n
s n s n

s n s n s n
s n s n

s n

(4)

The activation function output of negative value is
obtained using asymmetry principle () ()s n s n .
The amplification coefficient g controls the output range of
the hyperbolic tangent. If g = 1, then activation function is
linear. For g > 1, the nonlinearity in the LLN output grows.
The higher gain is the wider range of LUT is accessible. If
g = 16, then sout(n) varies in range [–1, 1]. The amplification
of ()s n more than 16 times is equivalent to the squeeze of
activation function or similarly to increase of the slope of
hyperbolic tangent for s(n) in range [–1, 1].

Program Matlab is used to create a reference design
working on floating-point data. Program Vivado high-level
synthesis (HLS) from Xilinx is used to create, simulate and
analyse constrained design. After the simulations of floating-
point and fixed-point designs, the corresponding output
signals out ()s n and outˆ ()s n are compared to determine the
LLN transfer function and the output signal discrepancies.

III. EVALUATION CRITERIA

The accuracy of the hyperbolic tangent approximation is
evaluated using average and maximum error with variable m
size memory and g amplification of signal ()s n [8], [15]:

1

avg out out ,
0

1 ˆ, () () ,
N

g m
n

g m s n s n
N

 (5)

 max out outˆmax () () .m s n s n (6)

The description in the literature of limits of the accuracy
of activation function is fragmented and it lacks commonly
acceptable values. The εavg and εmax values usually depend on
the precision requirements for the application and in many
cases maximum error 0.4 % [15], 1.5 % [8] or even 2 %

93

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 22, NO. 2, 2016

[6], [12] is tolerable.
The lattice-ladder can be set to work as nonlinear low,

high, band-pass or band-stop filter with additional gain
control (see Fig. 1). Such a system has the transfer function,
which will have distortions dependent on the limited LUT
size dedicated to the hyperbolic tangent function. To check
the accuracy of the LLN transfer function, the LLN must be
scanned by sin(n) signal, which contains all the frequency
components in range [0, fS/2], where fS is signal sampling
frequency. The frequency of sin(n) must linearly change in
time. This property has the chirp signal schirp(n)

 chirp 0() cos 2 () ,is n f n (7)

with instantaneous frequency sweep function expressed by

1 0
0

1
() ,i

f f
f n f n

n

 (8)

where f0 and f1 are desired starting and breakpoint
frequencies at time n = 0 and n = n1; ϕ0 = 0 – signal initial
phase.

To check the worst case of LLN transfer function
implementation, the parameters Θ2 = Θ1 = v2 = v1 = 0 and
v0 = 1 are set to pass through all frequency components to
the input of activation function. The transfer function of
LLN activation function is obtained by the estimator [16]

cross

auto

()
() ,

()
P f

T f
P f

 (9)

where Pcross(f) – cross power spectral density of sin(n) and
sout(n); Pauto(f) – auto power spectral density of sin(n).

The distortions between reference and proposed LLN
transfer functions are evaluated taking root mean square
(RMS) metric εT [11], [17]

S 2 2
T ,

0S

2 ˆ(,) () () ,
f

g g m
f

g m T f T f
f

 (10)

where ()gT f , ,ˆ ()g mT f – floating-point and fixed-point

transfer functions.

IV. RESULTS OF EXPERIMENTAL INVESTIGATION

We are interested in compact and enough precise
hyperbolic tangent activation function for lattice-ladder
neuron implementation. Therefore, the transfer function and
output signal discrepancies are measured under different
BRAM size. During experiments BRAM size is increased
2 times in each step from 64 B to 64 kB. The gain is
increased linearly from 2 to 16. Other LLN parameters are
kept unchanged. Independent on the BRAM size two bytes
precision is used for each sample of the approximated
hyperbolic tangent. The average and maximum errors (εavg

and εmax) are obtained by uniformly sampling sin(n) on 106

equally spaced points in the range of [–1, 1].
The average and maximum errors of the activation

function output depends almost linearly on the LUT size

(Table I). In comparison with the [8], the εmax less than
1.5 % can be achieved using 512 B LUT size or only 0.09 %
of total BRAM in xc7z020 FPGA chip [13] used here for
experimental investigation. Maximum error less than 0.4 %
[5] can be achieved using 2 kB of BRAM (one BRAM block
from 280 available in xc7z020) utilizing only 0.36 % of total
block memory in FPGA chip. The large LUT ensures small
error, e.g., 64 kB memory (see Fig. 3) yields εmax = 0.01 %
and εavg = 0.002 %, however utilizes 11.4 % of available
memory. Such high precision is very “expensive” as for
single LLN, however is useful for big neural networks with
shared activation function.

TABLE I. THE HYPERBOLIC TANGENT FUNCTION
IMPLEMENTATION ERRORS.

BRAM
size, B 128 256 512 1k 2k 4k

εavg, % 0.54 0.27 0.13 0.06 0.03 0.02
εmax, % 5.48 2.74 1.39 0.70 0.35 0.16

The maximum εavg is observed at g = 3 for all tested
memory sizes (Fig. 3). The rising gain allows to access
wider range of LUT addresses, therefore decreases the
quantization error and εavg falls slowly.

2 4 6 8 10 12 14 16
64k16k4k1k25664

–5

–4

–3

–2

–1
lo

g 1
0(

ε a
vg

)

Fig. 3. The average error of the LLN output, while changing gain and
memory size for approximated hyperbolic tangent function.

The chirp signal with sampling frequency fS = 11025 Hz
and duration n1 = 10 s is used for the transfer function error
estimation experiments. The results of transfer function
distortions εT(g, m) under two margin gains and three
different filter bandwidths fB1 = 5512 Hz, fB2 = 2756 Hz,
fB3 = 200 Hz, are presented in Fig. 4, as a dependence on
BRAM size. Decrease of the bandwidth will reduce the gap
between εT limits. The εT for LLN with fB1 decreases almost
linearly when memory size grows. The lower εT = 1.2∙10–4

and upper εT = 1.8∙10–3 limits belong to the LLN with widest
bandwidth using 2 kB BRAM for activation function.

Fig. 4. RMS errors of the LLN transfer function using different size LUTs.

When LLN is set to pass through all frequencies
fB1 = 5512 Hz, then the error εT decreases almost linearly
increasing both gain and memory size (Fig. 5). The gain set
to 2 yields highest error for a given memory size, because at
g = 2 with the s(n) signal only 1/16 of the approximated

94

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 22, NO. 2, 2016

hyperbolic tangent can be accessed. Setting the LLN to work
in narrower frequency band fB3 increases the error εT for
activation function with higher gain and vice versa, smaller
gain (less nonlinearity in the activation function) decreases
the εT. The increase of BRAM size more than 2 kB
nonlinearly improves the error of transfer function.
Therefore, 2 kB BRAM is identified as sufficient memory
size for activation function implementation as a trade-off
between resources and precision.

Fig. 5. The RMS error of the LLN transfer function, while changing gain
and memory size for approximated hyperbolic tangent function.

The LLN implemented in HLS tool was translated to the
low-level model described in VHDL for further synthesis
and uploading to the FPGA. The Place and Route tool shows
that, in the generated LLN circuit the hyperbolic tangent
samples can be accessed with frequency fmax = 312 MHz,
while fmax > 300 MHz is considered as a high maximum
frequency achievable in a practical FPGA systems [18].

V. CONCLUSIONS

The range addressable hyperbolic tangent activation
function for second order lattice-ladder neuron in a fixed-
point arithmetic is successfully implemented on xc7z020
FPGA chip.

Carried out experimental investigation affirms that:
1. BRAM size of 2 kB is sufficient to achieve tolerable
less than 0.4 % maximum error of the approximated
activation function output with small RMS error
εT = 1.8∙10–3 of the lattice-ladder neuron transfer function.
2. The narrower band lattice-ladder neuron has, the larger
error εT is, when operating in whole range of hyperbolic
tangent activation function.
3. Relatively high frequency fmax = 312 MHz is achieved
for activation function LUT access in a final synthesized
circuit.

REFERENCES

[1] J. Misra, I. Saha, “Artificial neural networks in hardware: A survey of
two decades of progress”, Neurocomputing, vol. 74, pp. 239–255,
2010. [Online]. Available: http://dx.doi.org/10.1016/j.neucom.
2010.03.021

[2] V. P. Nambiar, M. Khalil-Hani, R. Sahnoun, M. N. Marsono,
“Hardware implementation of evolvable block-based neural Networks
utilizing a cost efficient sigmoid-like activation function”,
Neurocomputing, vol. 140, pp. 228–241, 2014. [Online]. Available:
http://dx.doi.org/10.1016/j.neucom.2014.03.018

[3] V. Vaitkus, G. Zylius, R. Maskeliunas, “Electrical spare parts
demand forecasting”, Elektronika ir Elektrotechnika, vol. 20, no. 10,
2014, pp. 7–10. [Online]. Available: http://dx.doi.org/10.5755/j01.
eee.20.10.8870

[4] M. Bahoura, “FPGA Implementation of high-speed neural network
for power amplifier behavioral modeling”, Analog Integrated
Circuits and Signal Processing, vol. 79, no. 3, pp. 507–527, 2014.
[Online]. Available: http://dx.doi.org/10.1007/s10470-014-0263-7

[5] M. T. Tommiska, “Efficient digital implementation of the sigmoid
function for reprogrammable logic”, IEE Proc. – Computers and
Digital Techniques, vol. 150, no. 6, pp. 403–411, 2003. [Online].
Available: http://dx.doi.org/10.1049/ip-cdt:20030965

[6] B. Zamanlooy, M. Mirhassani, “Efficient VLSI implementation of
neural networks with hyperbolic tangent activation function”, IEEE
Trans. Very Large Scale Integration (VLSI) Systems, vol. 22, no. 1,
pp. 39–48, 2014.

[7] P. Ferreira, P. Ribeiro, A. Antunes, F. M. Dias, “A high bit resolution
FPGA implementation of a FNN with a new algorithm for the
activation function”, Neurocomputing, vol. 71, pp. 71–77, 2007.
[Online]. Available: http://dx.doi.org/10.1016/j.neucom.2006.11.028

[8] A. Armato, L. Fanucci, E. P. Scilingo, D. De Rossi, “Low-error
digital hardware implementation of artificial neuron activation
functions and their derivative”, Microprocessors and Microsystems,
vol. 35, no. 6, pp. 557–567, 2011. [Online]. Available:
http://dx.doi.org/10.1016/j.micpro.2011.05.007

[9] I. D. Campo, R. Finker, J. Echanobe, K. Basterretxea, “Controlled
accuracy approximation of sigmoid Function for efficient FPGA-
based implementation of artificial neurons”, Electronics Letters,
vol. 49, no. 25, pp. 1598–1600, 2013. [Online]. Available:
http://dx.doi.org/10.1049/el.2013.3098

[10] U. Lotric, P. Bulic, “Applicability of approximate multipliers in
hardware neural networks”, Neurocomputing, vol. 96, pp. 57–65,
2012. [Online]. Available: http://dx.doi.org/10.1016/j.neucom.
2011.09.039

[11] A. Gomperts, A. Ukil, F. Zurfluh, “Development and implementation
of parameterized FPGA-based general purpose neural networks for
online applications”, IEEE Trans. Industrial Informatics, vol. 7,
no. 1, pp. 78–89, 2011. [Online]. Available: http://dx.doi.org/10.
1109/TII.2010.2085006

[12] P. K. Meher, “An optimized lookup-table for the evaluation of
sigmoid function for artificial neural networks”, in 18th IEEE/IFIP
Int. Conf. VLSI System on Chip, 2010, pp. 91–95.

[13] Zynq-7000 all programmable SoC overview, Xilinx Inc., San Jose,
CA, 2014.

[14] D. Navakauskas, “A Reduced size lattice-ladder neural network”, in
Proc. IEEE Signal Processing Society Workshop on Neural
Networks for Signal Processing VIII, 1998, pp. 313–322. [Online].
Available: http://dx.doi.org/10.1109/nnsp.1998.710661

[15] T. Sledevic, D. Navakauskas, “The lattice-ladder neuron and its
training circuit implementation in FPGA”, in Proc. IEEE 2nd
Workshop on Advances in Information, Electronic and Electrical
Engineering, 2014, pp. 1–4. [Online]. Available: http://dx.doi.org/
10.1109/aieee.2014.7020327

[16] P. M. T. Broersen, “A comparison of transfer function estimators”,
IEEE Trans. Instrumentation and Measurement, vol. 44, no. 3,
pp. 657–661, 1995. [Online]. Available: http://dx.doi.org/10.1109/
19.387302

[17] L. Stasionis, A. Serackis, “Burst signal detector based on signal
energy and standard deviation”, Elektronika ir Elektrotechnika,
vol. 20, no. 2, pp. 48–51, 2014. [Online]. Available:
http://dx.doi.org/10.5755/j01.eee.20.2.6384

[18] G. Dessouky, M. J. Klaiber, D. G. Bailey, S. Simon, “Adaptive
dynamic on-chip memory management for FPGA-based
reconfigurable architectures”, in Proc. 24th Int. Conf. Field
Programmable Logic and Applications, 2014, pp. 1–8. [Online].
Available: http://dx.doi.org/10.1109/fpl.2014.6927471

95

