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1 Abstract—In this paper we examine the problem of
radiation from a vertical short (Hertzian) dipole above flat
lossy ground, known in the literature as the ‘Sommerfeld
radiation problem’. Our formulation is in the spectral domain
and ends up into simple one dimensional integral expressions
for the received electromagnetic (EM) field, representing the
exact solution of the problem. The problem can be solved
analytically in an approximate sense in the high frequency
regime using the Stationary Phase Method (SPM). In this
paper the above spectral integrals for the received EM field are
also mathematically represented as integrals over the ‘grazing
angle’, a formulation that allows for a more accurate
calculation since it avoids the singularities of the integrand
expression. Also, a new SPM analytical solution, based on the
above novel integral representation is obtained. Numerical
comparisons between our SPM solution and the integral
representations for the received EM field show that neither the
horizontal Transmitter–Receiver distance, nor the frequency of
operation are alone sufficient indicators regarding the most
appropriate method to use (SPM or Numerical Integration).
Instead, such a decision is to be based on their combined effect,
given by their product k·r (electric distance).

Index Terms—Sommerfeld radiation problem; spectral
domain; grazing angle; stationary phase method; electric
distance.

I. INTRODUCTION

The ‘Sommerfeld radiation problem’ is a well-known
problem in the area of propagation of electromagnetic (EM)
waves above flat and lossy ground with applications in the
area of wireless and mobile telecommunications [1]–[10].
The original Sommerfeld solution to this problem is
provided in the physical space by using the ‘Hertz
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potentials’ and it does not end up with closed form
analytical solutions. Subsequently, K. A. Norton [11]
focused in the engineering application of the above problem
and provided approximate solutions represented by rather
long algebraic expressions, suitable for engineering use. In
the above expressions, the so-called ‘attenuation coefficient’
for the propagating surface wave plays an important role.

In this paper, the authors advance on previous research
work of theirs, concerning the solution of Sommerfeld’s
problem in the spectral domain. Namely, in [12] the
fundamental integral representations for the received EM
field were given. Furthermore, in [13], [14] the Stationary
Phase Method was proposed (SPM, [15], [16]) and as a
result novel, closed-form analytical expressions were
derived, for use in the high frequency regime.

Moreover, in this article the authors elaborate more on the
integral expressions of [12] – [14]. Particularly, it is shown
that an appropriate selection of the integration variable and
subsequent use of the SPM method lead to useful insights
regarding the propagation mechanism. The expressions
obtained are also more suitable for calculation purposes
through numerical integration (NI) techniques, since some
inherent singularities in previously derived integral
representations are now removed, as shown in Section IV.

As stated in [17], [18] determining the necessary
conditions for the applicability of the SPM method, an
inherently high frequency technique, is essential. There, the
issue was investigated for the practical case of transmitter –
receiver pairs that are separated by a rather long distance, in
which case it was apparent that for most frequencies of
interest in the telecommunication area, frequency alone is a
good criterion for the selection of the most appropriate
method for EM field calculation at the receiver’s point.
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However, in Section V the authors examine the above
matter more thoroughly, i.e. for a variety of carrier
frequencies and distance ranges including close distances, in
which the usual far field asymptotic expressions, even for
the Line of Sight (LOS) EM field, do not apply. Particularly,
extensive simulations are run that compare the estimated
received EM field at an observation point above flat and
lossy ground under the following two approaches: (a) SPM
method, (b) Numerical integration of the corresponding
integral representations. Simulation results seem to be in
accordance with overall EM wave theory. Namely, in most
cases, it is not the value of frequency alone, but the electric
distance (k·r), the combined effect of frequency and
distance, that actually determines whether EM field
calculations should be based on the SPM method or
evaluated through numerical integration of the respective
integral expressions.

Finally, in Section VI, all important findings of this paper
are summarized and suggestions are provided on how they
can be utilized for the design and implementation of an
efficient simulation tool for radio signal estimation.
Additional implications for future research, triggered by our
results so far, are provided as well.

II. PROBLEM GEOMETRY

The problem geometry is provided in Fig. 1. A vertical
small (Hertzian) dipole, characterized by dipole moment p,
is directed to the positive x axis, at altitude x0 above infinite,
flat and lossy ground. The dipole radiates time-harmonic
electromagnetic (EM) waves at angular frequency ω = 2πf.
The relative complex permittivity of the ground is

'
r 0 0ε =  / / ,r i       where σ is the ground

conductivity, f is the carrier frequency and ε0 = 8,854 × 10-12

F/m is the absolute permittivity in vacuum or air. Finally,
the wavenumbers of propagation in the air and lossy ground,
respectively, are given as follows:

01 1 1 1 0 0ω ω ε μ ω ε μ ,k c   (1)

02 2 2 2 01 0ω ω ε μ ε i(σ / ωε ).rk c k    (2)

Fig. 1. Geometry of the problem.

Note that in Fig. 1 point A΄ is the image of the source
(Hertzian dipole) with respect to the ground (yz-plane), r1 is
the distance between the source and observation point, r2 =
(A΄A) is the distance between the image and observation

point, θ is the ‘angle of incidence’ at the so – called
‘specular point’ (which is the point of intersection of line
(A΄A) with the ground plane, and φ = π/2 – θ is the so –
called ‘grazing angle’ [19].

III. INTEGRAL SPECTRAL DOMAIN REPRESENTATION FOR

THE RECEIVED ELECTRIC FIELD AND CLOSED-FORM

ANALYTIC EXPRESSIONS IN THE HIGH FREQUENCY REGIME

Following [13], [14] the following integral representation
for the electric field at the receiver’s position above the
ground (x > 0), is derived
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and H0
(1) is the Hankel function of first kind and zero order.

Also note that in (3) '
2εr is a complex quantity, due to

ground losses, as explained above. Similar expressions hold
for the magnetic field [14], although only an azimuthal
component is present for the magnetic field vector H.
Moreover, in (3), ELOS is the Line of Sight (LOS) electric
field vector, whose expression can be given either in an
integral form [12] or via the following direct expressions in
cylindrical coordinates [15], [19]
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In (5),
1

1ζ 
 = 377Ω is the free space impedance

and parameters r1, θ1 are shown in Fig. 1. Note that these
parameters are related to the observation point’s cylindrical
coordinates (ρ,x) through the following expressions:
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Also, note that (5) holds for every distance r1 (i.e. either
large or small, with the only assumption that r1 is much
larger than the Hertzian dipole length) between the
transmitter and the receiver. For the usual case of large
distances, only the 1/r1 terms dominate, thus leading to the
well-known far–field expressions for the electric field of a
radiating Hertzian dipole in free space [19].

Application of the ‘Stationary Phase Method’ (SPM) to
(3) and (4), leads to the following analytic expressions for
the electric field vector scattered from the plane ground, in
the far field region and in the high frequency regime (for x >
0) [17], [18]
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Ιn (8), the following expressions hold [17], [18]:
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with kρs being the stationary point obtained from the SPM
method.

IV. REDEFINED INTEGRAL REPRESENTATIONS AND

CORRESPONDING SPM ANALYTIC SOLUTION FOR THE

RECEIVED EM FIELD. ADVANTAGES AND IMPLICATIONS OF

THE NEW APPROACH

We now introduce the following variable transformation
in the integral expression of (3)

01 cos .k k  (11)

Note that according to (4) and (11), the following
expressions hold:
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Substituting in (3) the following formula is obtained for
the total received electric field vector
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where Δ is the error arising from the fact that actually only
the (-k01, k01) range is considered in the above integration,
since according to (11), using  the selected transformation
variable, it is assumed that |kρ| ≤ k01. In other words, Δ can be
expressed by the following formula
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with g(kρ) being the integrands of (3). Its behaviour is
further analysed below.

Examining (13) in more detail, an important note can be
made at this point: in the present formulation, where
variable α is introduced as the variable of integration,
instead of kρ, no singularity exists for the integrand within
the (0, π) range of α. This is not the case in (3), where
singularities exist at points kρ = ±k01, leading to a major
problem for our numerical integration procedure, as
mentioned in [18]. This appears to be an important
advantage of the new proposed formulation, as also
described in Section VI below (future research).

Now, according to [14], in order to apply the SPM
method, we use the large argument asymptotic
approximation of the Hankel function, which in our case is
written as
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Substituting (12) and (15) in (13), the following
expression is obtained, after some rather lengthy, but
otherwise straightforward calculations
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In (17) above, angle φ and distance r2 are shown in Fig. 1
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(and described in detail just below Fig. 1). It is also apparent
that the following obvious geometrical relations hold:
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Note that (16)–(17) do not include the error factor Δ of
(13)–(14). This is due to the fact that according to the SPM
technique, which will be applied just below, only a small
region around the so – called ‘stationary point’, is
contributing to the overall integral calculation [15], [16].
According to (9), this stationary point (SP) lies within the
(-k01, k01) range of kρ, which with the transformation of (11)
it is mapped into the (0, π) range of variable α. In other
words, in the high frequency regime, and for a grazing angle
φ (Fig. 1) not very close to zero (so that the SP is not very
close to the boundary value of integration α = 0, see
application of the SPM method just below), the error Δ of
(13) and (14) is almost zero, i.e. Δ ≈ 0.

Now, according to the SPM method [15], [16] we define
the phase k01·r2 in (17) as a ‘large parameter’. Then the
phase and amplitude function for (17) are:

( ) cos( ),f     (19)

2 1

2 1

3 ' 2 2 2
01 02 012

' 2 2 2
01 02 01

ρ x

( )

ε sin ε cos
(cos )

.ε sin ε cos
ˆ ˆ( sin cos )

r r

r r

F

k k k

k k k

e e



 


 

 



   
    
   

(20)

According to [15], [16], the stationary point is obtained
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while the second derivative at αs is: 01)(  sf .

Then, according to the SPM method, integral (17) is
calculated as [16]
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Consequently, by using (22) for the SPM calculation of
(16), (17), we finally obtain, after some rather simple and
straightforward calculations, the following expression for
the total received electric field
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The above SPM closed – form analytic result was
obtained under the ‘high frequency approximation’
assumption, as well as the assumption that the ‘grazing
angle’ φ is not very close to zero, as already explained.
Under these assumptions, (23) just represents the summation
of the LOS field and the field reflected from the ‘specular
point’ [note that the fraction in (23) just represents the usual
‘Fresnel reflection coefficient’, [14], [18]).

V. NUMERICAL RESULTS: COMPARISON OF SPM WITH

NUMERICAL INTEGRATION TECHNIQUES

In this section, we expand on the simulation results of
[17], [18]. Indeed, in [18] the authors identified frequency
areas where it was not apparent which method, SPM or
Numerical Integration, is the most appropriate to use for EM
field estimation. Moreover, only long distance scenarios
were examined, which although of practical importance for
telecommunication applications they may hinder important
factors that affect the applicability of the SPM formulas.
Hence, the results presented hereafter are expanded to cover
short distance field calculations and at the same time an
attempt to further decrease the convergence tolerances of the
integral expressions was made, as given below. Finally,
figures for all field components are shown, i.e. LOS field,
Scattered field, Total field, whereas in [18] results pertained
to the reflected field behaviour. A description of the
simulation process is given in [17]. Table I summarizes the
basic parameter set used in our simulations. Also, note that
the numerical integration results, presented hereafter, refer
to the original integral format expressed by (3). Producing
similar results for (13) is left for future study, as mentioned
in Section VI. In addition, although all expressions, given in
Sections III & IV refer to the electric field, for completeness
simulation results are shown for both the electric and the
magnetic field.

TABLE I. SIMULATION PARAMETERS.
Symbol Description Value

fmin Minimum Frequency 30 KHz
fmax Maximum Frequency 3GHz
x0 Height of transmitting dipole 60 m
X Height of observation point (receiver) 15 m
I Current of the radiating Hertzian dipole1 1 A

2h Length of the Hertzian dipole2 0.1 m
εr Relative dielectric constant of ground 20
Σ ground conductivity 0.01 S/m

Short distance range 10m – 500m
Long distance range 1km – 5km

Numerical integration technique Adap. Simpson [14]
Excluded interval around singularity k01 0.00001 ∙ k01

Tolerance for integral convergence 10-9 – 10-6

Notes: 1 Relation between current I and dipole moment p: I(2h) = –iωp,
where ω = 2πf and i is the unit imaginary number;
2 Much smaller than the wavelength λ = c/f in both cases

The objective of these comparisons is to identify the
required conditions, which permit the use of the closed form
SPM expressions for EM field calculations above flat lossy
ground.

The first set of simulation results refers solely to the free
space EM field. Figure 2 depicts the convergence of the
exact formulas (5)–(7), which are applicable for every
distance from the transmitting source, to their corresponding
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far field asymptotic approximations, commonly found in the
literature [19]. As expected, the convergence is achieved
faster at higher frequencies. For the problem considered
here, which covers distances of up to 5 km, it is possible to
have significant deviations for even large distances, as
shown in Fig. 2(a) and Fig. 2(b). The implication for this is
that under these circumstances, SPM analytic solution, that
is (23) above, cannot be accurate. The reason is that (23)
essentially indicates the propagation of spherical (and for
large distances plane) waves, whilst according to (5)–(7) this
is not the case (dependence on higher orders of 1/r).
However, close proximity between the exact expressions (5)
to their respective far field counterparts, does not necessarily
guarantee the use of the SPM method, as will be explained
below.

The core of our simulations is shown in the graphs of
Fig. 3, which are related solely to the scattered field.
Particularly, the reflected EM field, as estimated by the SPM
method, is compared to the respective field values obtained
through the numerical evaluation of the corresponding
integral expressions. In other words, (3) is juxtaposed with
(8), having beforehand excluded the LOS contribution from
(3).

From Fig. 3(a)–Fig. 3(b) it is apparent that at 30 KHz and
100 KHz the SPM method significantly underestimates the
signal level and this is true for both the short and long
distance range of Table I (the gap between the two curves
tends to increase for shorter distances). Similar behaviour is
observed for all frequencies up to 1 MHz. At that frequency,
i.e. at 1 MHz, Fig. 3(c) indicates that it takes about 4.8 km
for the SPM values to match the numerical integration
results, a distance which is equivalent to 16 λ. At 10 MHz
(Fig. 3(d)), NI results outbalances SPM values for up to
350 m, or alternatively for about 13 λ–14 λ away from the
source. At even higher frequency ranges this observation is
essentially retained. Indeed, as seen in Fig. 3(e), SPM
provides better estimates after about 150 m, i.e. 15 λ. This is
also true at 100 MHz, shown in Fig. 3(f). Now the
breakpoint distance (the reason for the term will be
explained below), after which SPM behaves better than NI,
seems to be around 55 m or about 18 wavelengths away
from the source. The bottom line is that, contrary to [17],
[18], the applicability of the SPM method does not seem to
be solely determined by the frequency of operation. Instead,
it is the combined effect of frequency and distance from the
source that dictates its accuracy. This can be expressed
either in terms of a distance, which is relative to the
wavelength of radiation, or equivalently by the electric
distance, k·r. According to our simulation results a good
reference point above which field values can be accurately
determined by (22) is ~16 λ. In terms of the electric distance
this is equivalent to 32π.

To all fairness, the previously argued conclusion of ours,
does not completely cancel the findings of [17], [18].
Indeed, at [17] and [18] the authors examined solely far
distance ranges, which is why the above illustrated
combination effect between distance and frequency was not
easily deceivable. Moreover, returning to Fig. 3(f), it is
observed that before the breakpoint distance, SPM and NI
results are eventually close to each other. This ultimately
means that at 100 MHz and higher, the SPM method has

global applicability and can be used for almost every
distance of interest (or at least after 10 m which was our
minimum distance in our simulations). This justifies in
practice the characterization of the SPM method as a high
frequency approximation technique, which was one of the
major arguments of [17], [18].

Overall, our simulation results confirm at every means the
approximations and overall mathematical analysis of our
redefined SPM formulations, presented in Section IV. Recall
that at that section, the used approximations for the
derivation of the SPM formula were in the form of an
electric distance formula, k·r (k01·ρ for the large argument
approximation of the Hankel function, k01·r2 for the large
parameter of the SPM phase factor). This is a major
advantage over the previous SPM process given in [14], in
which the large parameter of the SPM phase factor was
solely ρ. As already mentioned, our simulation results do
agree with this new formulation.

An important statement regarding the interpretation of the
results presented in Fig. 3 must be made. Particularly, the
used SPM method is an asymptotic approximation technique
to the evaluation of the integral expression (3). Put it
differently, when the conditions for SPM are valid, the
results obtained through its application should be close
enough to the respective ones given by (3), with the
closeness becoming better as the distance ρ increases (since
the electric distance also increases). While this is the case
for small frequency sets (Fig. 3(a)– Fig. 3(c)) at higher
frequencies the numerical integration results seem to be
missing significant contributions. The reasons for this are
explained in detail in [18] and seem an inevitable
consequence of the presence of the singularity at kρ = k01,
which required for a sufficient range around the singular
point to be excluded from the integration interval. This
range appears more significant at higher frequencies, as
explained in [18]. This now justifies the use of the term
breakpoint distance introduced before. It is the distance
above which, in practice, SPM actually provides better
estimates than the exact integral expressions it tries to
approximate and hence at those occasions signal level
estimation should be based solely to SPM values.
Finally, in Fig. 4 we show the complex interference of the
direct and scattered field using both approaches, SPM and
NI. Since the LOS component is common to both methods,
expression (5) above, the proper estimation for the total field
follows the same rules used for the reflected field.
Therefore, at a certain frequency, use the NI results for field
calculations up to the breakpoint distance, whilst switch to
the SPM when the observation point is further away.
Especially at frequencies above 100 MHz and for the
reasons given above, SPM may be the selection of choice
for every distance. This is depicted in Fig. 5. At such high
frequencies, the relative complex permittivity becomes
almost real. As a result, the effect of the Brewster angle (θB)
appears (particularly, this is the so – called in the literature
pseudo Brewster angle [19]) in which the reflected field
almost disappears. From Fig.3(f) it is evident that NI fails to
describe this phenomenon, which is another indication on
why NI should not be used for distances longer than the
breakpoint distance and this is particularly true for large
frequencies.
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a) (b) (c) (d)
Fig. 2. Line of sight (LOS) EM field comparisons (exact formulae vs. far field approximations).

(a) (b) (c)

(d)                                                                                (e) (f)
Fig. 3: Scattered EM field comparisons (SPM method vs. NI method).

(a)                                                                                (b) (c)

(d)                                                                                (e) (f)
Fig. 4. EM field components.

a)                                                           (b)                                                         (c) (d)
Fig. 5. LOS field, scattered field and total field behavior (high frequency regime).
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VI. CONCLUSIONS

In the present article we re-examined the solution of
Sommerfeld’s radiation problem in the spectral domain,
initially studied by our research team in [12]–[14].
Particularly, in Section IV, after introducing a new variable
of integration to our spectral integrals, we ended up with
integral formulas, which exhibit important advantages over
our corresponding previous expressions of [17]–[18] (part of
which is (3), given above). In Section V, we presented
extensive simulation results for the received EM field and
for a variety of distances between transmitter and receiver,
as well as for a wide range of frequencies of interest. We
concluded that after a sufficiently large, relative to the
wavelength, distance from the transmitting antenna the
problem can be ultimately solved in an analytical manner
through the use of the SPM method.  When these conditions
are met, the propagation mechanism is essentially according
to the ray optics theory, since, based on (23), the total
received field is just the summation of the LOS field and the
field reflected from the ‘specular point’. The simulation
results show that the requirements for this relative distance
can be as small as 16 wavelengths or in terms of the electric
distance, 32π making thus the SPM method rather suitable
for most contemporary telecommunication applications.
Even more, at rather high frequencies (at leastin the VHF
area and above), this behaviour has essentially global spatial
significance.

Today, there exist several software simulation tools for
radio signal-level estimation, both open source and license
based [21]–[23]. These tools are broadly classified to
general scope simulators and specific simulators and
essentially utilize a combination of theoretical
approximation models (e.g. 2 ray model) and empirical ones
(e.g. the well-known Hata-Okumura) for predicting signal
loss. With the advance of IT technology it is now possible to
perform calculations on the basis of numerical integration
techniques, however great care is needed regarding the error
they may incur [23]. At any means, the advantages of using
accurate analytical models are more or less evident and
described in more detail in [17], [18]. As such, our SPM
closed-form solution appears a meaningful choice for a
software (SW) simulation package used for radio coverage
prediction since, as shown throughout this paper, it is
applicable for most practicable use cases.

Corresponding future research our research group will
focus on the major findings of our new formulation
procedure presented in Section IV. Particularly, numerical
results for the newly derived integral expression (13) will be
produced and compared with the corresponding SPM
estimates. It is expected that the new NI results will not
expose the errors described in Section V, leading thus to a
fully accurate method for signal-level estimation at almost
every frequency – distance combination. Moreover, from a
theoretical point of view, we intend to further examine the
behaviour of (13) and (14) (particularly as far as the error
factor Δ is concerned), which our research group believes
that may reveal important findings regarding the nature of
the propagation mechanism.

Finally, further future research work of ours will focus on
the solution of Sommerfeld’s radiation problem for the case
of a horizontal dipole. Moreover, another possible area of

investigation is the calculation of the received EM field
above or below the ground, for any frequency of the
radiating dipole, in an exact and analytical manner [24].
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