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1Abstract—A small-signal stability problem of a synchronous
generator influencing a power grid was studied. A thorough
theoretical analysis of a simplified linearized model of the
synchronous generator connected to an infinite bus was carried
out. The described analysis pointed out disadvantages of the
conventional linear power system stabilizer. In contrast to the
conventional, an original self-tuning power system stabilizer
was developed. This stabilizer compacts a linear quadratic
regulator and a recursive least square identification method.
The study involving numerical simulations and laboratory
experiments reveals encouraging results with displayed
advantages and feasibility of this novel approach in considered
applications.

Index Terms—Adaptive control, power system stability,
synchronous machine.

I. INTRODUCTION

One of the most sophisticated control problems of a
synchronous generator (SG) is the problem of small-signal
stability. Oscillations of SG’s electrical and mechanical
variables reduce production capacity of SG, efficiency of a
transmission line and lifespan of equipment. To enhance
damping of SG and to improve the power system stability,
SG must be equipped with a power system stabilizer (PSS)
[1].

The oscillations of older SG with conspicuous damper
windings have relatively small amplitudes. Therefore, these
SG operate mostly without PSS. Due to cost-design
construction optimization, modern SG have significantly less
damper windings. This can in turn increase the oscillations
and lead to the instability. In order to mitigate the stability
problem and to ensure safe and economic operation, more
and more of novel SG must be equipped with PSS [2].

The PSS utilize a static semiconductor’s excitation system
connected to rotor field winding. Conventional PSS design is
based on a linear control theory. Conventional PSS is easy to
realize. However, its application shows non-optimal
damping throughout the operating range. Namely, by
varying an operating point, SG’s dynamic characteristics
vary as well. This is the fact due to which PSS determined in
the nominal operating point does not assure the optimal
damping in the entire operating range. In the past decade,
major modern control theories were tested for purposes of
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the PSS design. Of all the methods, the adaptive control has
proved to be the most suitable for the design of PSS. The
adaptive control has been used in order to assure the optimal
damping through the entire SG operating range. The use of
the adaptive control is possible because the loading
variations and consequently the variations of the SG
dynamic characteristics are, in most cases, essentially slower
than the adaptation mechanism.

In this paper, the contribution to the stabilization of SG
was carried out with the compact system of the self-tuning
control using the linear quadratic regulator and the recursive
least square identification. By studying its parts, this
complex assembly looked promising and feasible for more
effective stabilization of SG, and was the main motivation to
take on. Subsequent research outcomes presented in this
manuscript are encouraging and will also become a part of
our lead in future development and real applications of the
control within a commercial power plant. The main original
contribution of the presented work is therefore description of
the development and the advantages of new self-tuning PSS
based on the linear quadratic regulator and the recursive
least square identification method.

II. MATHEMATICAL MODEL OF THE SYNCHRONOUS
GENERATOR

The SG connected to an infinite bus is a multivariable
non-linear dynamic system described with a 7th order non-
linear state-space model. For the control system design, a
simplified linearized 3rd order model (SLM) of SG is used
[3]. SLM of SG has two inputs: a mechanical torque (from a
turbine) and rotor field excitation voltage (from an excitation
system); and three state-space variables: rotor speed, a rotor
angle and voltage behind transient reactance. All variables in
SLM denote deviations from an equilibrium state and are
normalized on nominal base values.

During the normal operating conditions, SG is equipped
with an automatic voltage regulator (AVR). The AVR
controls SG’s stator terminal voltage to be the same as
reference terminal voltage. A disadvantage of the AVR
control system is that an additional voltage control loop
deteriorates stability of controlled SG [4]. The simplest
model of AVR with the exciter is a first order lag.

A block diagram of SLM of SG with the voltage control
system is shown in Fig. 1, where Tm is the mechanical torque
[pu], Te is the electrical torque [pu], ω is the rotor speed
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[pu], δ is the rotor angle [rad], qE is the voltage behind

transient reactance [pu], Efd is the field excitation voltage
[pu], Vt is the terminal voltage [pu], H is the inertia constant
[s], D is the damping coefficient of the damper windings
[pu/pu], ωr is the nominal synchronous speed [rad s-1], d0T 
is the direct axis transient open circuit time constant [s], K1

... K6 are the linearization parameters [pu/pu], kAVR is the
exciter and the voltage controller gain [pu/pu], TAVR is the
exciter time constant [s] and Vt,refΔ is the reference terminal
voltage [pu]. Subscript Δ denotes the deviation from an
equilibrium state and s is a Laplace complex variable.

Fig. 1 Block diagram of simplified linearized model of synchronous
generator connected to infinite bus, with voltage control system.

A state-space mathematical model of SG connected to the
infinite bus together with the AVR control system is
described with the following state-space equations:
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In this paper, typical SG of a turbo type with 160 MVA
was utilized for: (-) the analysis by means of the numerical
model, (-) for the control system design and synthesis, (-) as
well as for the numerical simulations [1]. In references, such
SG is commonly linked to benchmark cases. The data of this
SG are presented in Table I, where Sn is the nominal power
[MVA], Un is the nominal voltage [kV], cos φn is the nominal
power factor, xd and xq are the unsaturated d- and q-axis
synchronous reactance [pu], dx is the unsaturated d-axis
transient reactance [pu], and re and xe are the transmission
line resistance and reactance [pu].

TABLE I. SYNCHRONOUS GENERATOR DATA FOR NUMERICAL
ANALYSIS.

Sn = 160 MVA Un = 15 kV cos φn = 0.85 ωr = 377 s-1

xd = 1.7 [pu] xq = 1.64 [pu] dx = 0.245 [pu] d0T  = 5.9
s

re = 0.02 [pu] xe = 0.02 [pu] D = 2 [pu/pu] H = 3.96 s
TAVR = 0.05 [s] kAVR = 59 [pu/pu]

III. INFLUENCE OF THE SYNCHRONOUS GENERATOR
OPERATING POINT ON THE LINEARIZED MODEL DYNAMICS

By varying the operating point, the SLM’s parameters K1

through K6 also vary. Numerical analysis of the benchmark
SG shows that the values of the linearized parameters are
changing significantly with a changing operating point.
Figure 2 shows the influence of the operating point on the
parameter K5. The individual curve corresponds to the
constant reactive power Q. On every individual curve the
active power P varies in the range from 0.0 to 1.2 [pu]. The
individual curves correspond to the reactive powers from 0.0
to 1.2 [pu] in steps of 0.1 [pu].
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Fig. 2 Influence of operating point on parameter K5.

The influence of variation of an operating point on other
SLM’s linearization parameters is similar to that in Fig. 2.
The exception is parameter K3 which is independent on the
operating point variation.

For the SG stability analysis, parameters K1 to K6 are not
sufficiently transparent [5]. The linearized model of SG with
AVR, shown in (1) and (2) is a 4th order linear model whose
a characteristic polynomial has 4 eigenvalues. The influence
of the operating point on the SG’s dynamics can be clearly
evaluated by an eigenvalue loci analysis. For the SG stability
analysis, the dominant complex conjugate eigenvalues of the
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system matrix in (1) are especially interesting. They are
directly related to the period and the damping ratio of the
electromechanical oscillations. The results of the numerical
eigenvalue analysis of benchmark SG for the same P and Q
variations as in Fig. 2 are presented in Fig. 3.
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Fig. 3 Influence of operating point on dominant complex eigenvalue of
simplified linearized model of SG with AVR.

From the analysis of the influence of the operating point
variations on the SLM’s eigenvalues, we can conclude that
the variations in the SG dynamics are considerable and
therefore implementation of adaptive PSS will be
meaningful.

IV. LINEAR QUADRATIC POWER SYSTEM STABILIZER

Because of the non-linear dynamics of SG, conventional
linear PSS does not assure optimal damping in the entire
operating range. In this paper, the usage of adaptive PSS,
based on a linear quadratic (LQ) state-space regulator is
proposed. The input in the LQ regulator represents a state
vector of the state-space mathematical model of SG with
AVR, described in (1) and (2). The output of the LQ
regulator will be connected to a summing junction of the
voltage control system displayed in Fig. 1.

The LQ regulator is based on the state-space description
of the linear dynamic system

( ) ( ) ( ),t t t x Ax Bu (3)

where x(t) is a n-vector of the state variables, u(t) is a m-
vector of the input variables, A is the system matrix and B is
the input matrix. All possible pairs A and B are controllable.

The objective of the control law is to drive the state vector
x(t) from any non-zero initial values of states to the zero
state vector in such a way that infinite-horizon quadratic cost
function J defined with (4) will be minimized [6]

 T T

0
( ) ( )( ) ( ) d .tJ ttt t


  x Qx + u Ru (4)

In (4), Q is the symmetric positive semi-definite matrix
and R is the symmetric positive definite matrix.

A feedback control law that minimizes cost function J is
defined as

( ) ( ),t t u Kx (5)

where K is the feedback gain given by

-1 T ,K = R B P (6)

and P is found by solving the algebraic Riccati equation

T -1 T .A P + PA - PBR B P + Q = 0 (7)

V. SELF-TUNING POWER SYSTEM STABILIZER

Self-tuning PSS performs tuning of the PSS parameters at
the start of the operation and the adaptation of the PSS
parameters to the changeable dynamics during the operation
[7]. In such a way, self-tuning PSS assures optimal damping
of the SG’s electromechanical oscillations in the entire
operating range. Self-tuning PSS consists of four modules,
such as:
 decision mechanism module,
 plant identification module,
 parameter tuning module, and
 controller implementation module.
A block diagram of self-tuning PSS is shown in Fig. 4.

The modules will be only briefly described.

Fig. 4 Block diagram of self-tuning PSS control system.

A. Decision Mechanism Module
A Decision mechanism module coordinates operation of

the other three modules. During the operation, this module
performs continuous observation of SG’s oscillations. Based
on this information, the decision mechanism module controls
the following main tasks:
 controlled plant identification,
 controller parameters calculation and
 control law implementation.

B. Plant Identification Module
The parameters of the state-space mathematical model of

SG must be known to calculate the parameters of the LQ
regulator. A plant identification module identifies
parameters of the mathematical model of the controlled plant
[8]. To implement the identification, the decision mechanism
module coordinates the activities of the controller
implementation module and the plant identification module.
The controller implementation module generates a
supplementary pseudo random binary signal for controlled
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plant input perturbation. On a basis of these input changes,
the plant identification module calculates a discrete transfer
function of the controlled plant. A well-known recursive
least square method was used for parametric identification
[9].

C. Parameter Tuning Module
A parameter tuning module calculates feedback gain K of

the LQ regulator from the identified discrete transfer
function. The procedure to calculate feedback gain K
consists of two parts.

First, from the identified discrete transfer function, the
continuous state-space model of the controlled plant as
described in [10] is calculated.

Then, from the state-space model of the controlled plant
(1), the parameters of the LQ regulator are calculated.

D. Controller Implementation Module
The controller implementation module executes the

control law described by (5).

VI. SIMULATION RESULTS

To evaluate the applicability of developed self-tuning
PSS, proposed PSS was numerically tested. The control
system design was carried out for the linearized model of SG

with AVR. For the evaluation of the control system
performances under small-signal and large-signal
disturbances, the 7th order non-linear model of SG was used
[1]. Deterministic and stochastic disturbances were
systematically evaluated.

Simulations were conducted in the entire operating range
with more than 100 operating points. Due to the volume of
the paper, only results of the two typical operating points are
presented: the nominal operating point and very weakly
damped real operating point. The analysed operating points
and the corresponding eigenvalues of SLM of SG with AVR
are presented in Table II.

TABLE II. PRESENTED OPERATING POINTS WITH
CORRESPONDING EIGENVALUES.

Operating point: P = 1.0 [pu], cos φ = 0.85
λ1,2 = -0.492 ± 10.665 i λ3,4 = -9.995 ± 2.535 i

Operating point: P = 0.5 [pu], cos φ = 0.5
λ1,2 = -0.385 ± 10.119 i λ3,4 = -4.880 ± 10.101 i

Input changes are the same in all the cases and are shown
in Fig. 5. The variation of the SG’s electrical loads has
random step changes. In the voltage measurement system
and in the field excitation system, a band limited white noise
signal with height of power spectral density PSD = 0.0015
was introduced.
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Fig. 5 Input perturbations: electrical load [pu] (a) and voltage disturbances with noise [pu] (b).

Figure 6 shows the response of the SG rotor speed on the
described perturbations in the nominal operating point
without use of PSS. As can be observed in Fig 6, the

response of SG without PSS is poorly damped, hence it is
inevitable to use PSS.
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Fig. 6 Rotor speed in nominal operating point, without PSS.
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(b)
Fig. 7 Rotor speed and stabilizer output in nominal operating point P = 1.0 [pu] (a) and cos φ = 0.85 with self-tuning PSS (b).
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Fig. 8 Rotor speed and stabilizer output in weakly damped operating point P = 0.5 [pu] (a) and cos φ = 0.5 with self-tuning PSS (b).

Figure 7 shows behaviour of SG in the nominal operating
point where self-tuning PSS was used. The figure presents
the response of the rotor speed and the PSS output signal on
the same input disturbances as in Fig. 6. Controlled plant
identification and controller parameter tuning were carried
out previously. As can be observed in Fig. 7, the damping of
SG with self-tuning PSS was significantly improved – the
amplitudes of the oscillations with self-tuning PSS are more
than 10 times smaller than in the case without PSS.

Figure 8 shows behaviour of SG in the weakly damped
operating point. Such the operating point represents real
weakly damped operation of SG in the power plant. The
controller with the parameters obtained for the nominal
operating point does not assure optimal damping in a new
operating point. In this case, the decision mechanism module
started the plant identification and tuning of the controller
parameters. The LQ regulator in the controller
implementation module assures optimal damping in a new

operating point, which can be observed in Fig. 8.

VII. EXPERIMENTAL RESULTS

The proposed self-tuning controller has been tested on
15 kVA SG connected to the electrical network. Tested SG
has the following data:

TABLE III. DATA OF LABORATORY TESTED SYNCHRONOUS
GENERATOR.

Sn = 15 kVA Un = 400 V In = 21.7 A
cos φn = 0.80 f = 50 Hz nn = 1500 r/min

Instead of a turbine, a 30 kW AC motor with a frequency
converter was used for generation of a mechanical torque. A
static excitation system was used to generate field excitation
rotor voltage. The control system was realized with dSpace.
Figure 9 shows the experimental connection of the tested
synchronous generator with the mechanical torque
generating AC motor.
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Fig. 9 Tested synchronous generator with mechanical torque generated by
AC motor.

For the controlled plant identification, the SG’s inputs
must be changed to produce perturbations in SG’s
behaviour. For this reason, the step changes in the AC
motor’s mechanical torque and in the static excitation
system’s voltage were generated. On a basis of these
perturbations, the discrete transfer functions of the
controlled plant were calculated. The identification time of
the recursive least square method is dependent on the
magnitude and the dynamics of the input signals, on the
forgetting factor and on the initial matrix of the
identification method [9]. The SG was identified in the
entire operating range. In all the cases, the identification
time was less than 10 seconds. From identified transfer
functions, the state-space mathematical models for different
operating points were calculated. These models were used
for the calculations of the LQ-regulator parameters.
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Fig. 10 Response of tested synchronous generator electrical power
following step changes of AC motor’s mechanical torque.

The calculated controller parameters improve damping of
SG in the entire operating range. Figure 10 presents response
of SG following the step changes of the AC motor’s
mechanical torque in the vicinity of the operating point of
5 kW electrical power. Similar well damped responses were
obtained in the entire operating range. In all the cases
laboratory tests confirm the findings of the numerical

calculations. The recursive least square identification
method has proved to be very convenient for the
identification of the synchronous generator. The calculation
of the LQ-regulator parameters from the state-space
mathematical model of SG is computationally undemanding.
The LQ-regulator has well shown elimination of the low
frequency disturbances and the high frequency noise signal.

VIII. CONCLUSIONS

Due to changes in construction of novel SG, development
of more effective PSS is inevitable. The paper presents the
development and the application of self-tuning PSS for the
improvement of the SG’s small-signal stability. Proposed
self-tuning PSS is based on the coordination of the recursive
least square identification method and the LQ-regulator. The
combination of the selected identification and control
methods proved to be applicable for the PSS design.
Presented self-tuning PSS makes the initial tuning of the
controller parameters easier and assures the damping
improvement in the complete operating range. The results of
theoretical simulations and laboratory tests show essential
improvement of the SG damping. Due to the encouraging
outcomes, it is incumbent on the study it will also head
towards real applications (a power plant anticipated).

The discussed problem is up to date. The development of
new PSS is intense. We estimate that in the near future the
advanced PSS concepts will replace conventional PSS in
commercial excitation systems.
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