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Abstract—An Artificial Immune Adaptive Strategy 

combining immune adaptive control and immune genetic 

optimization is proposed based on the simulation of the immune 

mechanisms such as the antibodies’ bifunctional structure and 

the immune cells’ regulation principle. This strategy is capable 

of optimizing online parameters of the immune controller with 

fixed framework, better simulating the behavior of the biological 

immune system. The proposed artificial immune adaptive 

strategy is applied to the control of Continuous Stirred Tank 

Reactor  and its performance is compared with that of 

Cerebellar Model Articulation Controller. The results validate 

the effectiveness of artificial immune adaptive strategy. 

 
Index Terms—Artificial immune adaptive strategy, cell 

regulation, bifunctional structure, optimization, intelligent 

control  

I. INTRODUCTION 

It is challenging to control industrial plants due to their 

complicated nonlinear dynamics. In the past, many nonlinear 

control methods have been developed, such as adaptive 

control, robust control and variable structure control etc.. 

These methods rely heavily on the mathematical models of 

control plants. The (over)simplifications in deriving such 

models often lead to system performance degradation. 

Moreover, heavy demands on mathematical analysis can be 

too difficult to appreciate by many practitioners [1]. 

Intelligent control [2], [3] provides an alternative. The 

immune systems are a kind of complicated biologically 

motivated information processing system. They operate based 

on the ability of the immune response to identify the intrusion 

of antigens (As) and generate antibodies (Ab) to eliminate 

antigens so as to maintain the dynamically balanced health of 

human bodies. Therefore the immune system would be 

expected to provide a new methodology for dynamic 

problems and many researchers focused on the similarities 

between the behavior control system and the immune system, 

and have proposed many Artificial Immune Systems 
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(AIS’s) [4]–[13].  

However, till now many researches focus mainly on 

mimicking the capability on genetics and the optimization of 

immune system [6]–[13]. Meanwhile, a little of research 

paper have been publish on the immune control method or 

algorithm which proposed for the imitation prototype only by 

the T cell and the B cell special immune mechanism. By 

mimicking T-cell feedback adjusting mechanism, Takahashi 

[14] proposed an immune P controller consisting of the 

activation term (to control the response speed) and the 

suppression term (to stabilize the organism), but this kind of 

immune controller cannot compensate for the errors from 

noise and nonlinear disturbance. Takahashi [15] then 

proposed an improved immune PID controller. However, 

their method is not necessarily suitable for complex objects. 

Ding [16] 
 
proposed another adaptive immune controller. The 

main difference was the function depicting the action between 

killer T-cell and antigen is fuzzy mapping. The later immune 

controllers are mostly variants of the previous immune 

controllers [17]–[19]. 

The previous immune controller was designed mainly 

based on the interactions of suppressor T-cell, helper T-cell 

and killer T-cell with many simplifications and assumptions. 

These simplifications and assumptions were stopgap at that 

time. However, its drawbacks become more evident by 

today’s standards. 

In fact, the living system can maintain stability because of 

both genetic optimization and the ability to adapt, i.e., the 

double peculiarities of the immune action--adjusting control 

and genetic optimization. This can also be seen from the 

bifunctional structure of the antibody. Besides the control and 

elimination of antigen, the immune system has other 

behaviors such as genetic optimization [20]–[24]. 

Analysis 1. Antibody is essentially a bifunctional molecule 

with a variable region (V-region) and a constant region 

(C-region). The variation in C-region is limited. The variation 

in V-region is significant, by which different antigens can be 

bound. It is mostly the variation in the V-region that provides 

the adaptive capability and the fast response for the immune 

system [5], [21], [25]. Many earlier Immune Optimization 

Algorithms were designed by simulating V-region, while 

C-region is overlooked [5], [25]. On the other hand, the 

immune controller has a fixed form and the characteristics of 
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C-region are more exhibited, while the simulation of C-region 

is insufficient. 

Analysis 2. There may be innate chaos in the exact time 

system according to the researches on the creation model of 

leukocyte [24]. Pool [23] pointed out that the healthy 

variability is a certain well-heeled type of disorder called 

chaos. Goldberger concluded that chaos provides the body 

with the flexibility to respond to various stimuli. What stated 

above enlighten us that chaos may be an important factor for 

the quick immune response to eliminate the foreign antigens 

and keep healthy and normal body. 

This paper will focus attention on the antibodies’ structure, 

the immune cells’ regulation and chaotic proliferation, as well 

as both adaptive control and genetic optimization of the 

immune system. Then a novel Artificial Immune Adaptive 

Strategy(AIAS) featuring many immune characteristics is 

proposed and applied to control a complex object -- 

Continuous Stirred Tank Reactor (CSTR). Along with the 

better experiment results, this paper thus sheds new light on 

the control of complex systems. 

II. ARTIFICIAL IMMUNE FEEDBACK OPTIMIZATION 

CONTROLLER 

A.  Adaptation principle of biological immune cells 

The immune system protects bodies from the invading 

substances such as viruses, bacteria and other parasites by 

immune response and a large number of lymphocytes. There 

are mainly two kinds of lymphocytes: B and T cells originate 

in the bone marrow, T-cells mature in the thymus and B cells 

in the marrow. T-cells act as regulators and effectors 

[26]–[28]. The regulators regulate the immune response but 

cannot kill antigens. There are also two types of regulators: 

helper T-cells that assist the immune response and suppressor 

T-cells that inhibit the immune response. The effectors 

eliminate antigens directly and is therefore named killer 

T-cells—this type of immune response is cellular immunity; 

after the immune system is stimulated by antigens, a fraction 

of B-cells undergo terminal differentiation to produce 

antibodies to react with antigens idiotypically—this is called 

humoral response, which requires the assistance of helper 

T-cells. 

This mechanism which is called the T-cell regulated 

immune circuit is key during the immue response [29]. If the 

concentration of invading substances exceeds some level, 

Antigen Presenting Cells (APCs) begin to digest the large 

molecules of certain antigens and transfer the information to 

the helper T-cells, which then stimulate B-cells, killer T-cells 

and suppressor T-cells. This is the main feedback mechanism 

of the immune system. After being stimulated, suppressor 

T-cells inhibit the activity of all other cells, e.g., helper 

T-cells, killer T-cells and B-cells, and eventually tranquilize 

the reaction of immune system—this is another feedback 

mechanism of the immune system. The cooperation between 

the feedback mechanisms guarantees the immune system to 

rapidly respond In [29] a simple feedback mechanism on 

T-cell regulated circuit can be obtained. 

B. Immune feedback controller  

In this subsection we will give an outline on Immune 

Feedback Controller according to [15], [28], [29]. Define the 

amount of antigens at the k th generation as ( )kε , the output 

of the helper T-cells stimulated by the antigens as ( )
h

T k , and 

the effect of suppressor T-cells on helper T-cells as ( )
s

T k . 

Thus the total stimulation received by the killer T-cells is  

 ( ) ( ) ( )
h s

S k T k T k= − ,          (1) 

where  

 
1

( ) ( )
h

T k K kε= , 
1

( 0)K > ,               (2) 

 
2

( ) [ ( )] ( )
s

T k K f S k kε= ∆ , 
2

( 0)K > .         (3) 

In (2) and(3),
1

K  is the stimulation factor, 
2

K  is the 

suppression factor, f (.) is the nonlinear function dipicting 

the effect of the reaction of the killer T-cells  for the antigens. 

f (.) and ( )S k∆  can be defined as: 

 ( ) ( ) ( 1)S k S k S k∆ = − − ,           (4) 

 
2

( ) 1.0 exp( / )f x x a= − − .            (5) 

The parameter a  changes the function shape. 

By treating ( )kε  as the control error ( )e k  of a control 

system, and ( )S k  as the control output ( )u k , the immune 

feedback law can be describved as  

 ( ) {1 [ ( )]} ( )u k K f u k e kη= − ∆ .         (6) 

In (5) parameter 
1

K K=  controls the response speed, and 

parameter 
2 1

/K Kη =  controls the stabilization effect. It’s 

obvious that the performance of immune feedback law greatly 

depends on the selection of K , η  and the nonlinear function 

f . Note that the control algorithm of conventional P 

controller is 

 ( ) ( )
p

u k K e k= .       (7) 

We know that the controller (6) based on the immune 

feedback law is merely a nonlinear P controller comparing (6) 

with (7), whose proportional gain 

 {1 [ ( )]}
p

K K f u kη= − ∆          (8) 

is tuned by its own output
 
[14]: ( )u k∆ . 

The P-type immune controller in  (8) is not very effective 

for second- and higher order systems and could not 

compensate for the control error caused by noise and/or 

nonlinear disturbances. To overcome this drawback, an 

improved PID-type immune controller was proposed in 

z-transform as follows [15], [16], [18], [19] 

 1
( ) {1 [ ( )]}(1 ) ( )

1

I
PID P D

K z
u k K f u k K e k

z z
η

−
= − ∆ + +

−
.    (9) 
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C. Artificial immune adaptive strategy 

 
Fig. 1.  Immune controller parameters’ space and whole space for control 

parameters. 

The improved immune controller in  (9) can essentially be 

treated as a kind of nonlinear PID controller which conducts 

searching in the whole space for control parameters, as 

depicted in Fig. 1. 

In Fig. 1 each axis represents different Immune Parameters, 

respectively. From Fig. 1 it can be seen that the previous 

immune controller makes the whole space for control 

parameters degenerate to a line or a curve, which may miss the 

optimal or suitable parameters. This key weakness in fact 

exists in most immune controllers [15], [16], [18], [19]. 

Furthermore, how the immune system can maintain the 

stability of living system in dynamic environments so fast? 

As stated in Introduction, chaos maybe an important factor 

for the quick immune response Therefore we turn to research 

the logistic equation xn+1(t)=μxn(t)（1－xn(t)）（n=0，1，2

，…） in genetics. Logistic equation depicts a chaotic 

sequence describing the changing rule of insects’ number over 

generations, with better randomicity than usual RANDOM 

function.. 

Furthermore, as is well-known, chaos exhibits ergodicity in 

the whole space, as shown in Fig. 2. Fig. 2 is an illustration for 

logistic equation. 

 
Fig. 2.  Ergodicity of chaos. 

Utilizing the chaotic proliferation, global search in the 

whole immune parameters’ space can be realized. As a result, 

suitable parameters can be found, as described in our previous 

works [5]–[7] on Immune Genetic Algorithm(IGA). IGA is 

outlined as below.  

Considering an optimisation problem max f(X) , X ∈R
n
, 

f(X)>0, perform the steps below: 

I. Initialization with n:=0: 

 – Specify the population size N. Generate N binary strings  

of length l in uniform probability to form the initial 

population X(0)={X1(0), X2(0),…, XN(0)}; 

 – Specify the evolution termination criteria; 

 – Divide the initial population into K small 

sub-populations. 

II. Calculate the fitness of each individual in the population 

X(n). If X(n) meets the given termination criteria, the 

calculation is stopped and the individual with the best fitness 

is selected as the solution, otherwise go to step iii with 

n:=n+1. 

III. The following operations are in the i-th sub-population: 

 – Immune Recombination: exchange q pairs of genes. 

 – Immune Mutation: toggle each position in a string with a 

probability pm. 

 – Concentration control and stimulation value control: 

 )()

)(

()()1(
1

nakg
N

na

nAnA iii

N

j

jij

ii −++=+
∑

= β
γ

α , (10) 

 
))(5.0exp(1

1
)(

nA
na

i

i −+
= .       (11) 

Through the iteration of the above equations, the 

corresponding antibody’s concentration ai(n) can be obtained. 

Then calculate the selection probability SGAslct_ proi(n) in 

the way of SGA, calculate min(ai(n),SGAslct_proi(n)) as the 

immune selection probability. 

 – Immune Reproduction: process the copy in the children 

string according to step (iii.3). 

 – Immune Metabolism: 5% of the least stimulated 

individuals are selected to be eliminated; then new individuals 

with high affinity are created using logistic equation and 

added. 

IV. After calculations to each sub-population, get the 

maximal fitness value. If maximal fitness value is larger than 

that provided by existed antibodies in immune network, the 

corresponding individual is added to the table of memorized 

antibody, the corresponding maximal fitness value is added to 

the table describing antibody fitness value. Otherwise, the 

immune memory mechanism is started up to search better 

antibody with higher affinity. 

V. Terminate check. After the operations above, the 

offspring X(n+1) can be got. If X(n+1) meets the given 

evolution termination criteria, the calculation is stopped, 

otherwise go to step iii with n:=n+1. 

During the immune reaction there exist both adaptation of 

lymph cells and immune optimization. The two aspects 

coordinate with each other, resulting in fast response and 

stabilization. 

Based on the discussions above, a new Artificial Immune 

Adaptive Strategy (AIAS) embodying immune control with 

fixed structure and immune genetic optimization with variable 

behavior is proposed as below. 

In Fig. 3 the output of Immune Feedback Controller is  

 
1

( ) { {1 [ ( )]} } ( )
1

I
IFOC P D

K z
u k K f u k K e k

z z
η

−
= ⋅ − ∆ + +

−
,   (12), 

which depicts the lymph cells’ adaption. 

O 

Immune Para-1 

Immune Para-2 

Immune Controller 

Subspace 

Immune Para-3 

Whole 

Space  
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Fig. 3.  Artificial immune adaptive strategy. 

In Fig. 3, η  is immune suppression factor, 
IFOC

u  is the 

output of immune feedback/optimization controller with a 

fixed schema, KP, KI, KD are immune control parameters 

which can be viewed as general PID parameters from the pure 

classic automatic control point of view. The immune 

parameters i.e. η  and PID parameters are determined by 

immune optimization subsystem-IGA, which stands for the 

immune genetic optimization, and the immune cells’ chaotic 

proliferation. By immune optimization with IGA, suitable 

immune parameters can be obtained and transferred to 

immune feedback controller. To guarantee negative feedback 

control, set 0 [ ( )] 1f u kη< ∆ ≤ . 

From  (12) it can be seen that AIAS is composed of 2 

modules---immune optimization module and immune control 

module. The former depicts immune genetic optimization and 

the variation of V-region in antibody, while the latter has a 

fixed structure, which mimicks the lymph cells’ 

adaption/control and also depicts the stability of antibody. 

After the steps above we completed the simulation of the 

biological immune system and its actual behaviors in an 

artificial immune model. 

From (12) it can also be seen that KP KI and KD are 

independent of each other. This is different from the previous 

immune controllers. Through such independency not only the 

original immune cell feedback adaption model is inherited but 

also the immune control parameters can be adapted online 

asynchronously in the whole space. 

Table1 gives an explicit illustration with comparisons 

between real immune system and AIAS. 

TABLE 1. COMPARISONS BETWEEN BIOLOGICAL IMMUNE SYSTEM AND 

AIAS. 

Biological 

Immune System 

AIAS 

Immune Control Immune Optimization 

Organism gets hurt or 

infected by foreign 

material 

Control result is dissatisfactory 

or the plant(system) is unstable 

or disturbed 

Control result is 

dissatisfactory or the 

plant(system) is unstable or 

disturbed 

Foreign antigens 

attack the organism 

The output of the plant(system) 

does not reach the desired 

value 

The associated fitness 

function is proposed to be 

optimized. 

Antibodies  protect 

the organism and 

eliminate the antigens 

Calculate 
IFOC

u  as the 

controller’s output to control 

the plant(system). 

Give out the corresponding 

values of  KP、KI、KD、η  

related to global optimum. 

Organism gets 

recovered 

The error of the system is 0 or 

realize satisfactory control 

In optimization, the 

termination criteria is met. 

III. CSTR CONTROL ON AIAS 

In this section we will control CSTR with AIAS. The 

diagram is shown as Fig. 4. Acetic acid anhydride 

hydrolyzation is chosen here. Interactants are controlled by 

pumps to flow across CSTR with a fixed speed. The thermal 

energy released is brought out by looped coolant in pack of 

CSTR. The model of CSTR [2] is: 

 1 2
1 1

2

(1 ) exp( )
1 /

F a

dx x
x u D x

dt x γ
= − + −

+
,     (13) 

 2 2
2 1

2

( ) (1 ) exp( )
1 /

F a c

dx x
x u HD x u

dt x
β β

γ
= − + + − +

+
,  (14) 

 1y x= ,         (15) 

where 0.1,55.2,9.22,5.1,0.3 ===== Fa uHD γβ ,x1 is reaction 

conversion, x2 is reaction temperature, y is output. 

 
Fig. 4.  CSTR control system on AIAS. 

The time constant of CSTR is much bigger than sample 

period, therefore online optimization can be realized [3]. 

According to Table 1, antigen corresponds to 

e(k)=yd(k)-y(k) in immune control at time point k, while in 

IGA, antigen correspondes to the fitness function. The 

immune parameters KP, KD, KI , η are encoded in one 

chromosome as the individual IMi(ck) in IGA, then 

optimization proceeds to obtain antibody (control 

parameters). The parameter ck denotes immune generation 

number at each k. 

At time k the output of CSTR is y(k) =f1(k, IMi(ck)). Taking 

global consideration of the system performance, 

ITSE(integral of time weighted squared errors) is introduced 

to calculate fitness function to suppress overshoot. Thus in 

AIAS the fitness function should be 

 2

0

( )=1/ [ ( ) ( )]
d

k

Fitness ck k y k y k
∞

=

⋅ −∑ .       (16) 

Considering the errors in earlier stages have less influence, 

we design a new criterion named as windowed integral of time 

weighted squared errors (WITSE), by carrying out 

windowing transformation with the window size being 3. 

Thus the revised fitness is written as 

 
2

2

0

( )=1/ {( ) [ ( ) ( )] }d

i

Fitness ck k i y k i y k i
=

− ⋅ − − −∑ .   (17) 

Also considering that as the control proceeds the system is 

stabilized, the historical errors are treated by adaptive 

dampening, which can be formulated as  

2
2 2

1

( )=

1
=1/( [ ( ) ( )] {( ) [ ( ) ( )] } )

 ( ,  ( )). 

d d

i

i

Fitness ck

k y k y k k i y k i y k i
k

k IM ck

ε

ϕ
=

⋅ − + − ⋅ − − − + =

=

∑
  

(18)

 

Eq. (18) shows that as time k grows larger, the historical 

errors are reduced. At later stages the major impact on system 
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performance should be the current error. After the previous 

modifications, not only can this system inhibit early 

overshoot, the tracing accuracy in later period is also 

guaranteed.The item ε  is introduced to prevent the divisor 

from being 0. 

By making (18) as the antigen and optimizing the 

appropriate immune parameters with IGA, we can execute the 

control on CSTR. 

In Fig. 4 extrema control is uesd to adjust the system 

rapidly when error is very large. Expert adjustor is adopted to 

switch the extrema control and AIAS. The algorithm is  

 

, ,

, ,

, | | ,

ex

c ex

IFOC

u e e

u u e e

u e e

+ +

− +

+

≥


= ≤ −
 <

       (19) 

where (19) cu  denotes the actual control from the expert 

adjustor, ex
u ±  is the output of extrema controller, 

IFOCu  is 

the output of AIAS, e+  is the upper bound of error which 

should be empirically determined. 

IV. EXPERIMENTS AND DISCUSSIONS   

In this section simulations are proceeded to test the 

performance of AIAS by comparisons with other methods.  

In AIAS KP, KD, KI are constrained within the range from 0 

to 400, N is 30 and K is 5 in IGA. According to [16], 
2( ) 1 exp( / )f x x a= − − , a =0.01 and η ∈[0,0.8] [16]. The 

initial conditions are yd (0)＝0，y (0)＝0，x1 (0)＝0，x2 (0)

＝0，e+ =0.01， ex
u + =4.87， ex

u − =0. The size of immune 

population is 30 and the length of binary individual is 10. Two 

bits are selected stochastically for mutation. The generation 

number in IGA is set to 3. The control results using AIAS is 

shown as Fig. 5. The average time for each control point is 

1985.5s/2000=0.99275s with our MATLAB implementation, 

hence the control can be achieved in real time. 

 
Fig. 5.   CSTR tracing results with CMAC [2]. 

In all of the subsequent figures, x-axis denotes the time. We 

also show the control results with other methods, to compare 

with our AIAS.  

Fig. 6 shows the control results by regular immune 

controller using (9) and (5). This controller only simulates the 

C-region of antibody so the overshoot is large and the adjust 

time is also longer. Although we adjust parameters many 

times, the control effect is still inferior to that of AIAS. 

Fig. 5 is the results by CMAC inverse control. Although the 

learning rate is changed, the overshoot is still large and the 

adjust time is long. 

Comparing the figures it is clear that the method in this 

paper is superior. 

 
Fig. 6.  CSTR control with Immune Controller[16]. (a) kp=200, ki=5, 

kd=0.5, η=0.3, a=1;(b) kp=120, ki=1, kd=1, η=0.54,  a=1;(c)kp=120, ki=1, 

kd=1, η=0.8, a=1.5. 

V. CONCLUSIONS 

Through further study on the immune characteristics such 

as the bifunctional structure of immune molecular, adaptation 

and optimization functions, cells’ chaotic proliferation etc., a 

new AIS’s---Artificial Immune Adaptive Strategy (AIAS) is 

proposed with its feasibility analyzed and it is applied to 

control CSTR, which is a typical complex nonlinear system. 

As the result of this new control strategy, it will bring about 

two benefits and progresses as following: 

In process control, when error between the desired value 

and the real output occurs, the controller will start up 

optimization process to search suitable parameters in the 

global space quickly to carry out control, which can 

simulating real immune actions more comprehensively. 

Therefore the idea that both immune adaptive control and 

immune genetic optimization can be combined in one 

structure will shed new light on how to design more effective 

AIS. 

IGA is used in optimization. As proved in our previous 

works [26], although there are 4 parameters needed to be 

optimized, IGA can maintain diversity and prevent premature 

convergence effectively, which leads the appropriate 

parameters can be obtained quickly so that the system can be 

controlled better with temperature and humidity tracking 
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precisions being raised obviously, settling time and overshoot 

decreasing obviously. 

To sum up, the results indicate that the proposed method 

performs better than its peers and other traditional intelligent 

control methods such as CMAC and suggest an optimistic 

prospect in real world applications.  

Last but not least, for non-slow-changed complex objects, 

there are drawbacks of adopting the proposed method. Thus 

further study on Artificial Immune Systems is necessary if we 

aim to achieve better results and widen its applications. 
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