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1Abstract—Paper presents certain properties of Lyapunov
direct method for non-integer order systems. Mittag-Leffler
stability is defined and its relationship with Lyapunov stability
is investigated. General results for Lyapunov functions are
presented and a new result allowing constructive stability
analysis is proved. Results are illustrated with the examples of
stability analysis for problem of cooling, chemical reaction
evolution and parametric stability analysis.

Index Terms—Command and control systems, stability,
stability criteria, Lyapunov methods, fractional calculus.

I. INTRODUCTION

Non-integer order systems (often called fractional
systems) are a rapidly developing field in technical and
mathematical sciences. Most focus is oriented on their
properties (see for example [1], [2]) and applications (see
for example [3]–[6]). The goal of this paper is to highlight
one of the interesting results from the first group.

Lyapunov direct method provides a way to analyse the
stability of dynamical systems without solving the
differential equations. It is especially advantageous when the
solution is difficult or even impossible to find with classical
methods. A basic analysis can be found in [7]–[9].

It is interesting to investigate an extension of the method
for non-integer order systems. Such extension is based on
the concept of Mittag-Leffler stability which is presented
along with the appropriate theorem. Then we present some
methods for finding the Lyapunov function for non-integer
order systems.

II. PRELIMINARIES

Non-integer order calculus is important and rapidly
developing field in modern control theory. In brief it is
calculus with derivatives of non-integer order. In
applications the most popular definitions of such derivatives
are Caputo (1) and Riemann-Liouville (2) derivatives [10]:
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where  0,1p , n p    denotes the ceiling of p.
In analysis of non-integer order systems, the Mittag-

Leffler function has key role. Two types of Mittag-Leffler
function are used:

One-parameter Mittag-Leffler function
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where α > 0 and z ∈ C.
Two-parameter Mittag-Leffler function
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where α, β > 0 and z ∈ C. It is customary to denote Eα,1(x) =
Eα(x). For α = 1 and β = 1 we have E1,1(x) = ex. Therefore, it
can be seen as a generalization of the exponential function.
Mittag-Leffler function is used in the solution of such
systems but also for stability analysis [7], [8].

III. NON-INTEGER ORDER SYSTEMS

In this paper we analyse the stability of Caputo systems
[7], [8]. First let us consider a Caputo non-autonomous
system (5)

   0 ,t p
tC D x t = f t,x (5)

with initial condition x t0( ) , where  0,1p ,

f : t0 ,∞[ ] ×Ω→ Rn is piecewise continuous w.r.t. t, locally

Lipschitz w.r.t. x on t0 ,∞[ ] ×Ω and Ω is a domain that
contains the origin x = 0 . The equilibrium is defined in
Definition 1.
Definition 1. The solution of Caputo system (5) such that
x t( )= x0 = const is called the equilibrium.
Directly from the definition of Caputo derivative, we can see
that x0 is the equilibrium point if f t, x0( )= 0 , for t > t0
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[7], [8]. It can be also noted that it is sufficient to analyse
only the equilibrium point at the origin. We can always
transform the systems using substitution y = x − x0 . Similar
analysis can be made for Riemann-Liouville derivative [7],
[8].

It is possible to show the existence and uniqueness
theorem for non-integer order differential equations [10],
[11]. Similarly to integer-order systems, it is required that
the function f is continuous and Lipschitz w.r.t. x . There
are, however, some major differences, one of the most
important being that there are two theorems: one for Caputo
systems and one for Riemann-Liouville systems [11].

IV. MITTAG-LEFFLER STABILITY

Lyapunov stability theory is very important in nonlinear
systems analysis of integer order. Fractional systems,
however, have some unique properties which require a
different approach. Therefore, so called Mittag-Leffler
stability is introduced [7], [8].
Definition 2. (Mittag-Leffler stability) The solution of

   0 ,t p
tC D x t = f t,x (6)

is Mittag-Leffler stable if

        0 0 ,x t m x t E t t
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where t0 is the initial time, α ∈ (0,1), λ ≥ 0, β > 0, m(0) = 0,

m(x) ≥ 0, and m(x) is locally Lipschitz for x ∈ B ⊂ Rn with
Lipschitz constant m0.

In further analysis we will assume t0 = 0 and omit it in the

derivative symbol C
t0Dt

px t( ) := CDt
px t( ) .

In [7], [8] the authors claimed that asymptotic stability is
direct a consequence of Mittag-Leffler stability, but they did
not present any proof of this statement.
Proposition 1. Mittag-Leffler stability implies asymptotic
stability.
Proof. We want to show that for every ε, there is δ, such that
for every x(0) < δ, we have ||x(t)|| < ε.

We have

       0 .x t m x E t


   (8)

For α ∈ (0,1) and t > 0 we have

  1.E t   (9)

Hence
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Therefore

    0 .x t m x (11)

Let Ω be a compact ball  :n
rΩ = x R x r  where r

is a given radius. Given that m is continuous and defined on
Rn we have that m Ωr( ) is bounded (extreme value

theorem) and mb x( ) achieves its maximal and minimal

values. Let f .( ) be a function f :r→ f r( )=max mb x( ) on
n

rΩ R . Function f is continuous because  m is

locally Lipschitz. Let us take e= f r( ) . We have that for
every ||x0|| < r, the solution

     0 .rx t m x < max m Ω =   (12)

Delta is smaller than the smallest solution of e= f r( ).
The solution exists because f r( ) is continuous and takes
values from [0, ε]. Therefore, the origin is stable.

To prove asymptotic stability, it is sufficient to show the
attractivity of the origin. It can be done directly from the
definition of Mittag-Leffler stability. We have

       0 ,x t m x E t


   (13)

where m x0( ) has a finite value and Ea −lta( ) → 0 for

t→∞ [12]. The solution ||x(t)|| is bounded from above by a
function convergent to zero and from below by zero. Hence,

t→∞
lim x t( ) = 0 . Therefore, the origin is asymptotically

stable.

V. DIRECT LYAPUNOV METHOD FOR NON-INTEGER ORDER
SYSTEMS

In this section, we will present an extension of Lyapunov
direct method for non-integer order systems. This method
can be used to verify Mittag-Leffler stability of Caputo
systems (Theorem 2).

Theorem 2. Let x = 0 be an equilibrium point for the
system

   0 ,t p
tC D x t = f t,x (14)

and nD R be a domain containing the origin. Let
    : 0,V t,x t D R   be a continuously differentiable

function and locally Lipschitz with respect to x such that:

  1 2 ,a abx V t,x t x   (15)

   3 ,ab
DC t V t,x t x   (16)

where t ≥ 0 , x D , β ∈ (0, 1), α1, α2, α3, a, b are some
positive constants. Then the norm of the solution is bounded
by a Mittag-Leffler function
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where m is a locally Lipschitz function.
If β = p then the origin is Mittag-Leffler stable.
Proof. See [7], [8].
It is possible to relax the assumptions of Theorem 1 in

order to verify asymptotic stability. The following approach
uses class-K functions.

Definition 3. (class-K functions). A continuous function
a: 0,∞[ ) → 0,∞[ ) is said to belong to class-K if it is strictly
increasing and α(0) = 0 [13].

Theorem 3. Let x = 0 be an equilibrium point for the
non-autonomous non-integer order Caputo system. Let us
assume that there exists a Lyapunov function V t, x t( )( ) and

class-K functions αi, i = 1, 2, 3 satisfying:

      1 2 ,x V t,x t x   (18)

    3 ,C tD V t,x t x   (19)

where β ∈ (0, 1). Then the Caputo system is asymptotically
stable.

Proof. See [7], [8].
It can be observed, see for example [7]–[9], that direct

application of theorems 2 and 3 is not very useful for
checking the stability of non-integer order systems. There
are, however, certain rules which allow constructive use of
these theorems.

Theorem 4. Let x(t)∈R be a continuous and differentiable
function. Then for t greater or equal than 0, we have

     21 ,
2 C t C tD x t x t D x t  (20)

where α ∈ (0, 1).
Proof. See [14].

Using this result, we can prove the following proposition:
Proposition 5. Caputo system

   0 ,t
tC D x t = f x (21)

is asymptotically stable if x2k−1 f x( )< 0 for a certain k > 0.

Proof. Let V x( )= x2k be a Lyapunov candidate for the
system. We have
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Following this step k times we have

   
2 2 2 2 2 2... ...
2 4 2 402 2 .

k k k k k k

k kt
tCx D x t = x f x

     
  (23)

Now

1

2 2 2 12 2 1.
2 4 2 2

k k k k
k k

k i
i=

+ +…+ = =  (24)

Hence, if  
2 2 2...
2 4 2 0
k k k

k
x f x <
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 , then the system is

asymptotically stable and Lyapunov function for this system

can be V x( )= x2k .

VI. EXAMPLES

In the last section we will present three examples of
stability analysis in non-integer order systems.

Example 1. Cooling of an iron bar [15]
First, let us consider the iron bar of length 1 m with

specific heat c = 0.4375 J
gK

, density r= 7.88 g
cm3 and

thermal conductivity k = 0.836 W
cmK

subject to initial

condition u0 = 0 [15].
The equation for cooling the bar with the above

mentioned parameters (25)

   1/2 4 ,C tD x t = x t (25)

where x 0( )= 0 and l= 0.24277 . The analysis of
numerical solution can be found eg. in [15]. We will show

the asymptotic stability of this system. Let V x( )= 1
2
x2 be a

Lyapunov candidate for system. Then

 

 
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1/2 4 5

1 1
2 2

.

C t C t C t

C t

D V x = D x = D x

< x D x t < x x = x    (26)

Assuming x > 0 , we have −lx5 ≤ 0 . The assumption is
valid because x = u0 −u 0,t( ) , where u denotes the

temperature of the bar and in case of cooling u 0,t( ) ≤ u0

which implies x > 0 . Therefore, the system is
asymptotically stable.

Example 2. Chemical reactions
Let us analyse a chemical reaction of three substrates

,A+ B+C products (27)

where the initial concentration is the same for every
substrate a = b = d. Let c denote the instantaneous
concentration of any substrate. Then the kinetic equation has
the form (28)

3 ,dc
= kc

dt
 (28)

where k is a given parameter.
There are certain works which propose using non-integer

order calculus for describing chemical processes. The
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following equation is proposed

   3 .C tD c t = kc t  (29)

Let us take V c( )= 1
2
c2 . Then

   2 2

3 4

1 1
2 2

.

C t C t C t C tD V c = D c = D c < c D c t <

ck c = kc

   

    (30)

Assuming that k > 0, the system is globally asymptotically
stable.
Example 3. System with parameter
Let us take a system (31)

  sin .C tD x t = x+ kx (31)

The main goal is to find the values of parameter k such
that the system described with (31) is asymptotically stable.

Let us take V x( )= 1
2
x2 . Then

   

 

2 2

2 2 2 2

1 1
2 2

sin 1 .

C t C t C t C tD V x = D x = D x < x D x t =

x x+ kx x + kx = k + x

   

   (32)

The last two equalities are made under assumption that
sin x = x if x ∈ (-π/36, π/36). Assuming that x is in the given

interval, we have that for k < -1 , it is true that k+1( ) x2 < 0 .
Hence, the origin is locally asymptotically stable for k < -1.

VII. CONCLUSIONS

Presented extension of direct Lyapunov method for non-
integer order systems is a part of ongoing research. One can
easily extend the class of Lyapunov functions used in proof
of Proposition 5 to their linear combinations. It is, however,
interesting to find results similar to Theorem 4 which will
work for more general functions, such as quadratic forms.
Existence of similar conditions is currently an open question.
It should be however noted, that no constructive results in
Lyapunov functions for systems of non-integer orders were
available till 2014 ([14], [16]), so the field develops rapidly.
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