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Introduction 
 
 Thermo-electrical investigations of electrical wires, 
cable harness and electrical fuses are very important topics 
for present car design. Related questions have gained 
increasing attention by a number of researches [1,2,3]. 
Normally, heat transfer questions in electrical conductors 
are solved by different numeric methods if non-linear 
boundary conditions, arising from convection and 
radiation, have to be considered. However, non-linear 
phenomena require iterative calculation processes, which 
consume large computer time resources. Therefore, having 
numerical calculation results approximated by simplified 
mathematic expressions helps to speed up the analysis of 
thermo – electrical characteristics. In this paper, a single 
round wire with convection and radiation at the boundaries 
is treated to illustrate this procedure  
 The equation for heat dissipation is applied for round 
insulated wires, which are placed in the air. It is a second 
order partial derivative equation (PDE). Since, length of 
the wire is much bigger than the diameter; the matter can 
be treated as one-dimensional problem. The energy 
balance equation is solved numerically. Analytical solution 
of the PDE is not discussed in the paper.  
 In order to deal with non-linear boundary condition 
and other non-linearities numerical methods have to be 
applied. Several methods to construct finite differences of 
PDE can be used, like direct approximation by finite 
differences, Taylor Series or Finite Volume (control 
volume) approach. The FV method has been chosen, 
because of its flexibility in case the shape and location of 
control volumes has to be modified. In addition this 
method has advantage, that by direct discretization of the 
integral form of the conservation law, the basic quantities 
mass, momentum and energy will also remain conserved at 
the discrete level.   
 The differential equations are solved by using a semi-
implicit scheme. Semi-implicit schemes have the 
advantage over the explicit schemes, because of not being 
restricted to the size of the time steps. Since calculation has 
to be performed over a large number of time steps, the 
calculation time may become prohibitively large. The 
semi-implicit schemes help to avoid these shortcomings.  
 Thermo-electrical characteristics of insulated round 
wire are approximated by using polynomial fitting 
algorithm based on the least-square method. This method 

enables to calculate polynomial coefficients of second 
order polynomial equation. Second-order polynomial 
equations approximates reasonably precise the 
characteristics of isolated electrical wire.  
 All results obtained from numerical calculation have 
been validated by physical models. Experimental data 
obtained from measurements of different types and sizes of  
wires are used to validate thermal model of the electrical 
wire.  
 
Limitations of the analytical calculation  
 

General equation of thermal conduction. For the 
derivation of the thermal conduction equation a solid body 
with volume distributed heat sources is considered. In our 
case the heat source is a direct current. The equation of 
thermal conduction (1) is written in conservative form, 
which is required by the FV method. The conservative 
form means, that the derivative of variable coefficient λ 
does not appear in the equation. The physical model and 
temperature profile in the metallic wire and its isolation is 
shown in the figures no. 1 and 2 respectively.  

  
 Fig. 1.  Axial heat conduction of round isolated wire. Here: Pe – 
electrical power applied to the wire; Pr – dissipated electrical 
power in radial direction; r – radius of finite element of insulation 
r1 – radius of metallic conductor, r2 – radius of insulation; dr – 
dimension of finite element of insulation; dQ – heat energy 
 

The general form of heat transfer equation energy 
conservation form: 

 ( ) 0=
∂
∂

−+
τ

γλ TpgradTdiv ; (1) 

here EJp =  [W/m3] - specific heat flux; λ - heat 
conductivity of conductor or insulation in W/m.K; γ - 
specific heat capacity of conductor or insulation in J/m3K. 
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Fig. 2. Temperature profile in the metallic wire and its isolation. 
The following notations are used: Tc.a – temperature in the axis of 
the wire, Tc – temperature at the interface between wire and 
insulation (an assumption was made, that the temperature at the 
surface of the wire is equal to the temperature at the inner side of 
the insulation), Tin – temperature on the outer side if the 
insulation, Te – temperature of environment 
 
Taking in to account heat flux only in radial direction, the 
equation (1) takes the following form:  
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here ∆T(r,t)=T(r,t)-Tenv;Te – temperature of environment; E 
- electrical field [V/m]; J – electrical current density 
[A/m2]. 

Transient regime of heat transfer equation. The 
temperature distribution in transient state in the metallic 
wire and its insulation is given by the equations (2), where 
heat conductivity and heat capacity coefficients λ and γ 
respectively, have to be considered for conductor and 
insulation differently.  
 
The following initial and boundary conditions apply: 

- initial condition 
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(no heat flux in the axis of the conductor) 
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here α - convection heat transfer coefficient of wire 
insulation surface in W/m2K. The equation of α can be 
found in [4]; d – diameter of conductor in m; Tin – absolute 
temperature of insulation in K; ε - emissivity coefficient ; 
σ - Stefan-Boltzmann constant, σ = 5,67 10-8 W/m2K4. 

The two conditions of the continuity equation for heat 
transfer at the point r = r1 have to be stated:  

- continuity equation for the heat flux (heat flux, 
which goes out of the surface of the metallic conductor 
enters the inner side of insulation) 
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- continuity equation for the temperature of conductor 
cT∆ and insulation inT∆  

 ( ) ( )
21 rrinrrc TT == = ∆∆ . (7) 

Steady state regime of heat transfer equation 
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Initial and boundary conditions for steady state regime are 
the same as for transient regime. 

Existing problems of solving heat transfer 
equation. The main problem of solving the equation is the 
variable coefficients, which lead to the difficulties of 
solving the heat conduction equation. The main difficulties 
arise from: 

a) non-linear behaviour of electrical resistance of 
conductor material. In the heat equation (3) the electrical 
field strength coefficient E is influenced by electrical 
resistance and is therefore a function of temperature:  

 ( )( ) ( )( ) ],,1[ 2
000 TtrTTtrTEE −+−+= ρρ βα  (9) 

here E0 - electrical field strength at reference temperature 
T0; αρ - linear temperature coefficient of copper specific 
resistance at T0. αρ =3.83×10-3 in 1/K at T0=20°C; βρ - 
square temperature coefficient of copper specific 
resistance at T0. βρ = 6×10-6 in 1/K2; T0 - reference 
temperature in K. 

b) non-linear behaviour of  heat conductivity 
coefficient λc  of conductor material. This coefficient is a 
non-linear function of temperature [4]. 

c) non-linear dependence of specific heat capacity 
coefficient of conductor and insulation materials γc and 

γins. These coefficients are also non-linear functions of 
temperatures and can be found in the literature [4].  

d) non-linear boundary condition of wire insulation 
Eq. (10). The non-linearity is caused by convection and 
radiation to environment. Heat convection also depends on 
extremely non-linear heat transfer coefficient of wire 
insulation surfaceα, which is a non-linear function of 
conductor diameter and temperature.  

All these non-linear phenomena, mentioned above 
can not be considered when solving the heat equation in 
analytical way. Therefore, it is inevitable to apply some 
numeric technique in order to scope with above declared 
problems.  
 
Numerical approach of solving heat conduction 
equation 
 
 Since it is not possible to have analytical solution of 
the heat transfer equation if non-linear boundary conditions 
as well as non-linear physical constants of the materials 
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have to be considered, a numerical way had to be used to 
solve the heat transfer problem in insulated round wires.  
 As already mentioned earlier, the FV method is used 
to construct finite difference approximations of PDE. This 
method is based on the conservation of a specific physical 
quantity as thermal energy. The approach employs 
numerical balances of a conserved variable over small 
control volumes.  
 The first step in the FV method is to state the 
governing Eq. (2) in its integral form [5]. The region of 
application for the conservation principle must be also 
given. After the control volumes are defined, the Eq. (2) 
has to be applied to this volume (see Fig. 3) and the 
conservation statement becomes 
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Various finite difference approximations for 
T∆∂2 / 2r∂ , T∆∂ / r∂ and T∆∂ / τ∂  are used for the 

surface integrals. Approximating the derivatives by the 
central differences we get 
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The initial condition in numerical terms for the Eq. 
(11) is given by: 
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The boundary condition, which is convective and 
radiative, has to be also written considering FV method: 
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Using central differences to approximate the 
derivatives, we can write: 

( )( )e
n

i

n
i

n
i

i TTTd
r

TT
−+

−+ ∆α
∆

∆∆
λ ,1  

 ( ) 044
=






 −+ e

n
i TTεσ . (14) 

 The equations (11,14) are solved implicitly, where at 
one time level the equation for all space nodes have to be 
solved simultaneously. This method has advantage of 
being typically unconditionally stable and the schemes are 
not restrictive to the size of the time step. The price, which 
has to be paid, is the need to solve either linear or non-
linear systems of equations.  
 When defining the numeric scheme of temperature 
profile in the wire (Fig. 3) it was made an assumption, that 

in the metallic conductor there is no temperature 
distribution because of copper heat conductivity, which is 
about 103 times higher then polyvinylchloride (PVC) heat 
conductivity. Therefore, overall computation time is 
reduced.  
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Fig. 3. Numerical scheme of temperature profile in insulated 
round wire 
 

When equation (11) is solved numerically, for 
different layers; conductor, insulation and environment, 
different material coefficients have to be applied. 

For conductor the following coefficients apply: λc - 
heat conductivity of conductor; γc - specific heat capacity 
of conductor; p - specific heat flux. 

For insulation the following coefficients apply: λins - 
heat conductivity of conductor; γins - specific heat capacity 
of conductor. 

In the following three pictures (Fig.4, 5, 6) are shown 
the results obtained from numerical calculation. For the 
investigation round insulated wire of 16 mm2 cross-section 
has been chosen. The environment temperature is 65°C, 
maximal nominal temperature of the wire insulation is 
90°C.  
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Fig. 4. Thermo-electrical characteristic of round insulated wire 
 

 Fig. 4 shows temperature increase in the conductor of 
electrical wire when the power source is direct current. The 
picture represents temperature difference between 
conductor and environment temperature. Fig. 5 depicts 
electrical field strength in dependence on electrical current. 
It can be seen from the chart, that first part of the curve 
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does not have linear behaviour, which is caused by specific 
resistance of copper, which is not linear in the respect to 
the temperature. The second part of curve is linear, because 
the numerical algorithm stopped temperature increase in 
the conductor at 90°C. This part of the curve depicts the 
electrical field strength for the maximum wire temperature. 
Fig. 6 gives the so called heating-up time as function of the 
current, which is the time until the maximal permissible 
temperature of the wire is reached. It is a logarithmic 
function, where time approaches zero if current goes to 
infinite. 
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Fig. 5. The characteristic of electrical field strength versus 
current of round insulated wire 
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Fig. 6. Heating up time characteristic of round insulated wire 
 
This characteristic is very important when designing 
electrical fuses, because fuse has the same characteristic 
and both curves have to mach in order to protect the cable 
against short circuit currents.  
 
Experimental verification of heat transfer model 
 
 The numerical model of the electrical wire was 
validated by experimental results. Different sizes of 
electrical wires were loaded with direct current and the 
voltage drop across the wire measured. Simultaneously the 
temperature on the surface of the metallic conductor was 

read by thermocouples. On the basis of this experimental 
result it was possible to validate the heat conductivity 
value λins of the insulation material and the temperature 
coefficient αro of metallic conductor.  
 
Fitting algorithm of thermo-electrical wire 
characteristics 
 
 The next is to simplify the thermal model of the 
isolated wire by applying so-called “simplified equations” 
with only two coefficients for each equation, which 
describes wire characteristics (Fig. 4, 5 ,6) with a 
reasonable precision within the relevant range. The fitting 
algorithm is employed in order calculate these 
characteristic coefficients. The simplified equations are 
given bellow: 

- thermo-electrical behaviour of the wire (here 
0≥I ): 

 ( ) 2
0 IbIaIIT +=≤∆ ; (15) 

- electrical field strength of the wire (non-linear and 
linear of the characteristic, here 0≥I ) 

 ( ) 2
0 IdIcIIE +=≤  or ( ) ( )IIdcIIE 00 +=≥ ; (16) 

- heating-up time of the wire: 
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All 6 coefficients of equations (18, 19, 20) I0, a, b, c, 
d, τ, are valid only for one wire type. The Least-Square 
Method is used in order to obtain these coefficients. The 
following equations are applied:  

- Final Temperature per Current coefficient a: 
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- Final Temperature per Current square coefficient b: 
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- Field Strength per Current coefficient c: 
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- Field Strength per Current square coefficient d 
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- Time Constant τ 
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here n,1=∀ ; where n is the number of calculating points 
in the wire characteristics; 
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Applications and Extensions 
 
 The presented algorithm to calculate thermo-electrical 
characteristic coefficients of insulated wires is applied to 
the single electrical wire, which is placed in the air. The 
numerical algorithm has been presented here in a 
summarised form for illustration. However it shows that 
non-linear heat conductivity of the conductor and all other 
phenomena as non-linear convection, radiation and 
electrical resistances were considered.  
 Extensions of the proposed method to the two-
dimensional model analysis of conductors with limited 
length like fuses would allow calculating axial and radial 
temperature distributions.  
 In essence the polynomial fitting method, which is 
presented here, is also applicable to any thermal analysis 
problem of electrical conductors e.g. flat cable structures, 
flat and cable harnesses. 
 

Conclusions 
 
 The proposed methodology to treat thermal analysis 
problems in electrical conductors has proven to provide 
fast and efficient solutions, which completely satisfy 
experimental results.  
 In this paper the algorithm is presented to calculate 
thermo-electrical characteristics of round insulated wires. 
The method is also valid for other wire geometries and 
multidimensional temperature distribution.  
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A. Ilgevičius, H. D. Liess. Elektros laidų terminė analizė baigtinių tūrių metodu // Elektronika ir elektrotechnika. – Kaunas: 
Technologija, 2003. – Nr. 4(46). – P. 87-92. 

Aprašytas apvalių izoliuotų elektros laidininkų termoelektrinių charakteristikų apskaičiavimo algoritmas, įvertinant šilumos srautų 
pasiskirstymą radialine laidininko kryptimi. Kadangi šilumos pernešimo lygties koeficientai yra netiesiniai, uždaviniui spręsti turi būti 
taikomi iteraciniai metodai. Kai reikia apskaičiuoti didelio skaičiaus laidų charakteristikas, kompiuterio skaičiavimo trukmė neleistinai 
padidėja. Todėl yra pritaikytas termoelektrinių charakteristikų aproksimacijos antrojo laipsnio polinomais algoritmas. Gautos aproksi-
macijos išraiškos yra antrojo laipsnio polinomo lygtys, kurios labai paspartina skaičiavimą. Nagrinėjamas atskiras izoliuotas elektros 
laidininkas laikomas ore, įvertinant šiluminę kraštų konvekciją bei spinduliavimą. Matematinis modelis yra sudarytas remiantis energi-
jos konservavimo dėsniu, kuris yra pritaikytas elektros laidininkui. Energijos balansų lygtis, kuri aprašo šilumos perdavimą laidininke 
yra homogeninė dalinių išvestinių lygtis su nepastoviais netiesiniais koeficientais. Netiesiškumai yra įvertinti apskaičiuojant laidininko 
elektrinę varžą, specifinę šiluminę talpą bei kraštinę lygties sąlygą: konvekciją ir išspinduliavimą. Šilumos perdavimo lygčiai spręsti 
skaitiniu būdu buvo taikomas baigtinių tūrių metodas. Remiantis šiuo metodu, buvo sudarytos lygties dalinių išvestinių baigtinių skirtu-
mų aproksimacijos. Mažiausių kvadratų metodu apskaičiuoti polinominių lygčių koeficientai I0, a, b, c, d, τ. Il. 6, bibl. 5 (lietuvių kalba; 
santraukos lietuvių, anglų ir rusų k.). 
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A. Ilgevičius, H. D. Liess. Thermal Analysis of Electrical Wires by Finite Volume Method // Electronics and Electrical Enginee-
ring. –  Kaunas: Technology, 2003. – No. 4(46). – P. 87-92. 

In this paper is proposed the algorithm to calculate thermo-electrical characteristics of round insulated wire, considering temperature 
distribution in radial direction. However, non-linear phenomena require iterative calculation processes, which consume large computer 
time resources. Therefore, having numerical calculation results approximated by simplified mathematic expressions helps to speed up 
the analysis of thermo – electrical characteristics. The procedure of obtaining polynomial coefficients from thermo-electrical 
characteristics is the major emphasis of this paper. In order to illustrate the procedure for implementation, only a single round wire with 
convection and radiation at the boundaries is treated. The mathematical model is obtained from energy conservation law and is applied 
to the round wire. The energy balance equation, which describes heat transfer in a round wire, is a homogenous partial derivatives 
equation (PDE), where non-linear electrical resistance and specific heat capacity are considered. Finite Volume Method (FVM) is 
applied for the development of finite-difference equations, thus to solve iterative problem, which is caused by non-linear phenomena in 
electrical resistance, convection and radiation. The PDE is solved by semi-implicit method. Finally, least-square algorithm is used to 
obtain polynomial coefficients I0, a, b, c, d, τ. Ill. 6, bibl. 5 (in Lithuanian; summaries in Lithuanian, English, Russian). 
 
 
А. Илгявичюс, Д. Лесс. Термоанализ электрических проводов методом конечных объемов // Электроника и 
электротехника. – Каунас: Технология, 2003. - № 4(46). – С. 87-92. 

Предлагается алгоритм для вычисления термоэлектрических свойств круглой изолированнщй проволоки, учитывая ради-
альное направление распределения температуры. Однако нелинейное явление требует итеративного вычитывания, которое 
приводит к использованию огромных ресурсов ПК и времени. Следовательно имея прочитаные данные, аппроксимируемые 
упрощенными математическими выражениями, можно ускорить анализ термоэлектрических характеристик. Одним из самых 
главных  элементов данного доклада является процесс получения  полиномиальных коэффициентов  из  термоэлектрических 
свойств. Для того, чтобы проиллюстрировать осуществление данного процесса, исследуется только одна круглая проволока с 
конвекцией и радиацией по концам. Математическая модель достигается на основе закона сохранения энергии и применяется к 
круглой проволоке. Уравнение  энергетического баланса, которое характеризует теплопередачу в круглой проволоке является 
гомогенным уравнением частной производной (partial derivatives equation PDE), где  нелинейное электрическое сопротивление 
и определенное теплоемкость должно быть взято во внимание. Метод конечных объемов (FVM) используется для вывода 
конечно-разностного уравнения, чтобы решить итеративную проблему, вызванную нелинейными явлениями электрического 
сопротивления, конвекции и радиации. PDE решается полу-неразрешенным методом. В заключение используется алгоритм с 
наименьшими квадратами для вычисления полиномиальных коэффициентов I0, a, b, c, d, t. Ил. 6, библ. 5 (на литовском языке; 
рефераты на литовском, английском и русском яз.). 


