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Introduction

As a result of ever-growing processing energy, larger
storage space and faster communication channels, modern
embedded systems (ES) are predominantly pervasive and
mobile. However, there are heavy constraints on software
that limit the functioning of ES, e.g., algorithms that are
used in embedded software have to be executed in
predefined time with a given accuracy. The time and
accuracy constraints always were at the focus for
evaluating functionality and efficiency of ES. However,
with the advent of mobile computing platforms, other
characteristics, such as energy consumption, became an
important issue, too.

In most embedded applications, such as cellular
phones or portable electronic devices, energy is an
important constraint. By decreasing energy consumption,
battery life is extended and more capabilities can be
included in a device for the same battery capacity.
However, there are few tools available to help ES
designers to evaluate their designs in terms of energy
usage. Currently accurate energy estimation tools are
available only for lower levels of design – at the circuit
level and to a limited extent at the gate level [1, 2]. For an
embedded processor, circuit- or gate-level simulation is
slow and impractical to evaluate energy consumption of
embedded software.

Although energy consumption has always been a
critical concern for mobile computing, other characteristics
(execution time, accuracy, memory) remain as important as
ever. Current energy analysis methodologies are simply
not compatible with the progress in performance
evaluation and optimization. They either neglect
performance efficiency or isolate energy consumption
from other performance metrics such as execution time or
memory utilization. It is believed that energy consumption
is a major cost when running some large scale applications
[3]. This means during an overall cost analysis, energy
consumption should be taken into account and should
eventually be integrated into performance characterization

and evaluation. Thus a systematic approach is needed to
evaluate multiple characteristics in embedded software.

The aim of the paper is to introduce a systematic
approach for evaluating multiple characteristics and their
trade-offs in embedded software. At the core of the
approach is a thorough analysis of the problem and
solution domains, explicit representation of the domains
using feature diagrams (FDs) [4] and identification of
relationships among various characteristics (features) using
analytical and modeling methods. Our contribution is a
framework of the methodology for managing embedded
software development trade-offs (execution time, energy,
accuracy, memory), which use FDs for describing trade-off
evaluation models at a high level of abstraction.

Related works

1) Energy management. Several techniques have been
proposed for energy management in portable and
embedded computer systems [5, 6]. Some processor
manufacturers have adopted dynamic voltage scaling [7]:
the processor clock frequency and supply voltage can be
changed on-the-fly to make a trade-off between speed and
energy consumption. A method described in [8] relies on
application-level observations of battery dissipation for a
representative set of benchmarks. Another approach for
optimizing embedded software energy consumption using
instruction reordering and generation of energy-efficient
code is proposed in [9]. It is based on an instruction level
model that quantifies the energy cost of individual
instructions and of various inter-instruction effects.

2) Profiling-based power optimization is carried out
using profiling tools and is applied at several levels of
abstraction: user [10], operational [11], algorithmic, data
and instruction-level [12]. The profiler utilizes a cycle-
accurate power consumption simulator and relates energy
consumption and performance of underlying hardware to
the given source code. Using layer abstraction allows
developers to focus first on a very abstract view of the
problem, and then lower the abstraction level and perform
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optimization at a narrower scope. Application-level
profiling can be used for dynamically modifying
application’s behavior to conserve energy [13]. Energy
profiling, automated data representation conversion,
derivation of polynomial representation and symbolic
algebra is combined by [14], where energy profiling is
used to identify critical sections of code that need to be
optimized. For complex functions, the symbolic algebra
techniques decompose the polynomial representation of the
basic blocks of a program into a set of embedded processor
instructions and automate energy and performance
optimization of the arithmetic sections of source code.

3) Transformation-based optimization. In [15], power
consumption is optimized using loop unrolling, where the
number of processor cycles is reduced by eliminating loop
overheads, and loop blocking, where large arrays are
broken into several pieces and reused without self
interference. Compiler optimizations such as linear loop
transformation, tiling, unrolling, fusion, fission and scalar
expansion are also considered by [16]. However, only loop
unrolling is shown to decrease the consumed energy.

4) Trade-offs of power vs. other criteria. For
embedded software, other attributes of algorithms, such as
execution time, is also important [17]. In most cases
minimizing execution time also means minimizing energy
consumption. Therefore, additionally to transformation-
based optimization, instruction reordering, instruction
packing, operand reordering, register allocation, and
memory assignment can result in power savings.

A framework of the methodology for assessing multiple
criteria

The framework analyzes problem and solution
domains at program construction time. The problem
domain identifies influential factors, awareness factors,
problem type, criteria, their trade-offs and relationships.
Analysis of the problem domain consists of the following
phases:

 Identification of influential and awareness factors;
 Decomposition of an application into two parts:

calculation-intensive and communication–intensive
(in this paper we consider only the first part);

 Identification of the criteria: calculation accuracy
(A); performance (P); memory (M) and energy (E);

 Identification the following trade-offs: 1) P-A; 2) P-
M; 3) P-E; 4) P-A-E;

 Selection of a method (analytic or modeling-based)
for trade-off evaluation.
Analysis of the solution domain consists of:

 Identification of calculation-intensive algorithms for
embedded applications;

 Selection of representative algorithms for embedded
applications;

 Specialization of the representative algorithm(s) for
different criteria;

 Description of analytic and modeling-based methods
with respect to the identified criteria trade-offs.
What is common for a majority of the calculation-

intensive algorithms is that they can be reduced to simpler
algorithms such as cosine function. The final reduction

leads to the identification of a representative algorithm.
Calculation of the Taylor series using the Horner’s scheme
is a representative algorithm because of a variety of
functions that can be expressed and calculated using the
scheme. The Horner’s scheme as a representative
algorithm has yet another important property: it can be
specialized to a variety of criteria and their trade-offs. We
summarize the analysis phase by creating high-level
domain models described using feature diagrams (FDs).
FDs [18] are tools for representing essential domain
features, their dependencies and relationships.

Fig. 1. FD model for representing application-level energy
consumption and performance

Fig. 1 explains a general framework that specifies
high-level features and possible contexts of the formulated
problem. The average energy consumed by a processor
while running a certain program is given by ddVIE  ,

where I is the current and ddV is the supply voltage. The

energy consumed by a program, pE , is given by

TEE p  , where T is the execution time of a program.

Energy consumption values can be obtained
physically using the ammeter (AMM). The advantage of
the Operating System (OS)-based measurement, which is
usually expressed by the battery voltage drop, is that long
program execution loops can be introduced to achieve
higher accuracy through automatic measurements.

Fig. 2. Application model to evaluate trade-offs of program
characteristics

Fig. 2 explains the features of the problem and
solution domains. Note that black circles denote obligatory
features that were taken into account in our investigation.
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White circles denote obligatory features that can be
analyzed in other contexts. The models (Fig. 1–2)
represent the analyzed domains in the general form and
contribute to the explicit description and better
understanding of the essential domain features in a whole.

Algorithm and program specialization

Program efficiency can be improved by using 1) more
efficient algorithms that solve the same computation
problem, or 2) approximate computation algorithms that
sacrifice accuracy for gain in other characteristics. More
specifically, there are two methods for solving this
problem: data specialization and program specialization.

Data specialization [19] aims at encoding results of
early computations in data structures. The execution of a
program is divided into two stages. First, a part of the
algorithm is pre-computed in advance and the results are
saved in a data structure such as look-up table (LUT). A
LUT usually is an array (cache), which replaces a runtime
computation with a simpler memory access operation. The
speed gain can be significant, because retrieving a value
from memory is faster than undergoing an expensive
computation. Specialization of the algorithm is performed
as follows. (1) Analyze the application source code to
identify references to the computation costly functions. (2)
Generate a LUT for the specialized function using the
metaprogramming techniques. (3) Replace all references to
the function by the reference to its LUT. A more detailed
description of the methodology can be found in [20].

Program specialization [21] aims at improving the
efficiency of programs by exploiting known information
about the input of a program. An example of such
specialization can be computation of the Taylor series
specialized for its length.

Case study for cosine function

Trigonometric functions sine, cosine and tangent as
well as their inverse functions play important roles in many
fields like acoustics, astronomy, DSP, computer graphics,
electrical engineering and electronics, mechanical
engineering, optics, etc. [22]. For the application of
trigonometric functions in real-time ES, typically both the
numerical precision and the resource demands are relevant.

The cosine calculation (Eq. 1) has been chosen as a
representative algorithm of the calculation-intensive
application. According to the Amdahl's law, the most
effective way to improve performance of a program is to
speed-up the most time-consuming part of it. If we speed-
up the calculation of cosine values, we can achieve
significant gains in program execution times and power
usage. Such fine-grained customization is very typical to
embedded software development [23]. We analyze three
variants of the representative algorithm: Taylor series,
cosine LUT and cosine LUT with linear interpolation.
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Approximation of a function using simpler operations
(e.g. addition and multiplication) as in Taylor series of a
cosine function enables achieving higher performance and
lower power consumption at a cost of accuracy.

Evaluation using the monomial form of an n -degree

polynomial requires at most n additions and   2/2 nn 

multiplications, if powers are calculated by repeated
multiplication and each monomial is evaluated
individually. Using the Horner's scheme representation we
need only n additions and n multiplications.

For even better performance, data specialization can
be applied: known cosine values can be stored in a
generated LUT. The trade-off here is that accuracy of the
result may depend upon the size of the table. However, in
many applications such as JPEG, the results of DCT are
rounded-off to the integer values anyway. The complexity
of the LUT based method is constant. It requires only 1
multiplication for the calculation of a LUT index and does
not depend upon the size of a LUT.

In a simple LUT, the value of a function argument is
rounded to the nearest value for which a function value in a
LUT exists. Thus the accuracy of this approach is not fine.
A more complex approach includes a LUT with linear
interpolation of the function values for these arguments of
a function, which are not available in the LUT. The
complexity of the LUT with linear interpolation is also
constant. It requires 2 multiplications and 4 additions, and
does not depend upon the size of a LUT.

Measurement method

For estimation of energy, two methods can be used:
energy meter-based and OS-based (Fig. 3). The first is
better suited for system-level, while the second is more
relevant for program level measurements. The OS-based
method evaluates voltage drops in battery over program
execution time using calls to a specific OS function in
different time slots. The display of the mobile device is
switched off to avoid unnecessary consumption of power.
The measurement result is automatically written to the file
before and after calculations that are repeated cyclically in
order to ensure the needed accuracy (see Fig. 3).

Fig. 3. Energy measurement algorithm at program level
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The precision of voltage measurements is 1 mV, and
of performance measurements is 1 ms. The calls to cosine
functions were put into loops and repeated 108 times, while
argument values were taken from (0, π/2) range.

Results of experiments

Our investigation corresponds to that part of the
general framework, which is described by obligatory
features in feature diagrams (see Fig. 1 and 2).

The experiments were performed on a Compaq iPAQ
H3900 (Pocket PC platform, Intel PXA250 400 MHz CPU,
32 MB RAM, Windows CE 3.0 OS).

The absolute errors of the cos specialization methods
are shown in Fig. 4. Taylor series have the best accuracy,
while a LUT without interpolation has the worst. Accuracy
of the reference function Math.Cos() complies to the IEEE
754 standard and is 0.5 ULP (units in the last place), i.e.
0.5∙10-24 for single precision floating point arithmetic.

a)

b)

c)

Fig. 4. Accuracy (abs. error) of cos computation using a) Taylor
series, b) simple LUT and c) LUT with linear interpolation

For the Taylor series, execution time and voltage
drop of the cos function grows linearly with series length
(Fig. 5), whereas for the LUT-based approximation
execution time and voltage drop is flat (Fig. 6). The LUT
without interpolation has lowest power consumption and
best performance. The LUT with linear interpolation has
worse power consumption and performance, but higher
accuracy. The Taylor series have the worst results both in
terms of power and performance (except for n = 2 case,
which however, has worst accuracy). The results are
presented for the entire experiment (108 calls to the
measured function).

a)

b)
Fig. 5. Execution time (a) and voltage drop (b) of the Taylor
series of cos function

a)

b)

Fig. 6. Execution time (a) and voltage drop (b) of LUT
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The results are summarized in Table 1. The data
memory size for LUT methods is m8 , where m is a size of
LUT; 8B is a size of a double type used for computations.

Table 1. Experimentally and analytically established complexity
of cos function specialization methods

Specialization
method

Time, ms
Voltage

drop, mV

Data
memory
size, B

Taylor series 57-688n 7-32n 0

LUT without
interpolation

560 280 m8

LUT with linear
interpolation

1150 580 m8

The trade-offs between power consumption
(expressed via battery voltage drop), execution time and
calculation accuracy (expressed via Mean Absolute
Percentage Error - MAPE) parameters are shown in Fig. 7.

a)

b)

c)

Fig. 7. Trade-offs: a) power/execution time, b) power/accuracy,
c) execution time/accuracy

The statistical reliability of complexity estimation
using linear fitting is presented in Table 2. The results for
voltage drop using simple LUT and execution time using a
LUT with linear interpolation could not be fitted
satisfactorily due to large spread of measurement results,
thus these relationships were established analytically. Such
results indicate the difficulties of performing
measurements on mobile devices, which were not
considered in our experiments. The following factors had
significant influence on the results of the experiments: 1)
lithium battery discharge behavior deviates significantly
from the behavior of an ideal energy source. We have
observed that sometimes the battery voltage may increase
marginally due to internal chemical effects. Such
anomalous behavior may account for large dispersion of
voltage drop measurement results. 2) There is a lack of
reliable performance profiling tools in Pocket PCs,
therefore the OS processes may influence the results of
performance measurement.

Table 2. Statistical reliability of results

Measurement
No. of

measu-
rements

Corre-
lation

Std.
deviation

Execution time (Taylor series) 5 0.999 47.9
Voltage drop (Taylor series) 5 0.945 26.9

Execution time (LUT) 7 0.775 78.9
Voltage drop (LUT) 7 0.163 18.9

Execution time (LUT + linear
interpolation)

7 0.193 41.6

Voltage drop (LUT + linear
interpolation)

7 0.691 2.80

Conclusions

We have presented a framework of the methodology for
managing embedded software development trade-offs
(speed, power, accuracy, memory), which uses Feature
Diagrams for describing trade-off models at a high level of
abstraction. Such models can include the influential
factors, the awareness factors, the type of the problem,
single performance, accuracy, memory, and energy
criteria, trade-offs of the criteria and relationships. Trade-
off models can be used to represent embedded program
design trade-offs in energy-speed and energy-accuracy
dimensions, and to select a program implementation that
best matches system requirements and/or constraints.
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Improvement of characteristics of embedded system programs is important, because of limited resources available for applications
in mobile devices. Decreasing power consumption is especially important because of limited battery life and slow growth of battery
capacities. Here we analyze a problem of program specialization with multiple criteria (execution time, power, memory, accuracy) in
mind. We propose a framework of the methodology for assessing multiple criteria in the problem domain and describe high-level
models for evaluating embedded program characteristics using Feature Diagrams. To improve the characteristics of embedded software
algorithms, we use function approximation and data specialization (look-up tables). In a case study we analyze the characteristics and
trade-offs of the implementations of cosine function. Ill. 7, bibl. 23 (in English; summaries in English, Russian and Lithuanian).

Р. Дамашевичюс, В. Штуйкис, Е. Толдинас. Специализация вложенных программ для множественных критериев //
Электроника и электротехника. – Каунас: Технология, 2008. – № 8(88). – C. 9–14.

Улучшение характеристик вложенных программ важно из-за ограниченных ресурсов в мобильных устройствах. 
Уменьшение расхода энергии вложенного программного обеспечения особенно важно из-за ограниченного срока службы 
аккумулятора и медленного роста мощностей батареи. Мы анализируем проблему специализации программ с множеством
критериев (время выполнения, расход энергии, обьем памяти, точность). Мы предлагаем контуры методологии для оценки
множественных критериев в проблемной области и описываeм модели высокого уровня для оценки характеристик программ
используя диаграммы характеристик. Для улучшения характеристик алгоритмов, мы используем аппроксимацию функций и 
специализацию данных. Мы анализируем характеристики алгоритмов функции косинуса, которая широко используется в 
области цифровой обработки сигналов. Ил. 7, библ. 23 (на английском языке; рефераты на английском, русском и литовском
яз.).

R. Damaševičius, V. Štuikys, J. Toldinas. Daugiakriteris įterptinių programų specializavimas // Elektronika ir elektrotechnika. –
Kaunas: Technologija, 2008. – Nr. 8(88). – P. 9–14.

Įterptinių sistemų programų charakteristikas svarbu gerinti dėl ribotų mobiliųjų įrenginių išteklių. Energijos suvartojimą mažinti yra
ypač svarbu, nes akumuliatorių eksploatavimo trukmė yra ribota, o jų talpa didėja lėtai. Analizuojama daugiakriterio (pagal vykdymo
trukmę, energijos suvartojimą, naudojamos duomenų atminties dydį, skaičiavimų tikslumą) programų specializavimo problema. Siūlomi
daugiakriterio įvertinimo probleminėje srityje metodikos kontūrai ir aprašomi aukšto lygmens modeliai, skirti įterptinių programų
charakteristikoms nustatyti sprendimo srityje naudojant bruožų (požymių) diagramas. Algoritmų charakteristikoms gerinti naudojami
funkcijų aproksimavimo ir duomenų specializavimo (lentelės) metodai. Tiriamas kosinuso funkcijos skaičiavimo algoritmų
charakteristikų įvertinimas. Il. 7, bibl. 23 (anglų kalba; santraukos anglų, rusų ir lietuvių k.).


