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Introduction

The analysis of electroencephalographic (EEG)
signals is usually done using tools generally adequate for
linear signals. Asit is well known that the EEG signals are
extremely nonlinear signals, the need for suitable
algorithms comes up.

One possible answer to this challenge may be the use
of a new technique employed in the nonlinear spectral
analysis which is based on the generalized entropy of a
probability distribution, the so called Rényi entropy. It
defines a set of fractal dimensions that characterize the
time series from both the amplitude and the frequency
point of view.

In what follows, we will review the theoretical
background for the algorithm that allows the computing of
the fractal spectrum in the next section. The third one is
devoted to the characterization of the EEG signals, the
fourth deals with the potential implications of the resultsin
detecting the epileptiform activity and the possibilities of
using the fractal spectrum as an indicator for the brain
activities specific to a certain task; the last one is
committed to the conclusions.

Thefractal dimension based on the Rényi entropy

Dealing with EEG signals classification and taking
into account the nonlinear character of these signals there
are just a few possbhilities to choose from when
characterization is needed. One of them is to determine the
so-called correlation dimension. This measure belongs to a
wider, in fact infinite, class of fractal dimensions and this
is why it seems possible to gather more information when
computing the whole fractal spectrum, not only the
correlation dimension itself.

The definition for the generalized entropy based on
the moments of order r of the probability p;, according to
Rényi, [1], isgiven by
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When deding with EEG signals, the above

probability is not known and therefore an adapted
algorithm must be employed: the signal is divided into m
intervals and for each one the times my that the signal
passes through it is counted. Consequently, the probability
for agenericinterval is
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Knowing the above probabilities, the generalized
fractal dimension of order r may be written as follows:
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where Ax is, in apractical circumstance, the smallest value
of the signal that may be evidenced by the instrumentation
used to record the EEG signal.

For a given probability distribution, the generalized
fractal dimension D, is named fractal spectrum,; it provides
information concerning both the amplitudes and frequency
of the analyzed time series and that is why it is considered
a better way to characterizeit.

It is worth noticing the following particular cases for
the above definition: 1) the correlation dimension,
mentioned earlier, is obtained when r = 2 and 2) there are
two limit cases, for r = - o0 and r = o, when the fractal
dimensionis
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These two cases define the ranges of fractal
dimensions and their difference, D, - D,, iS a strong
indicator of the chaotic behavior of the time series: the
bigger the difference, the better evidenced are the chaotic
properties.

The presence of less expected values of the signal is
evidenced by larger values of the fractal dimensions of the
same order.

The data sets

The EEG signal seen as a chaotic time series is not a
well-established topic. Some authors even conjecture that
the nonlinear dynamics governing the brain may be seen as
“consciousness’, at least at the evolutionary scale, or in
pathology, [2] - [4]. Nevertheless, due to the obvious
nonlinearities of the signal, the methods suitable for such
signals are supposed to provide more accurate information
than the ones usually employed for linear ones (e.g. FFT).

There are two major possibilities to characterize
chaotic (or chaotic-like) signals: the Lyapunov coefficients
and the fractal analysis. In what follows we shall focus on
the latter in order to suggest a method suitable to fulfill the
need to predict epileptic seizures and to differentiate
between the various points of the scalp where the EEG
signals are taken from, when dealing with P300 evoked
potentials as the ones in the Donchin paradigm.

Classification of the epileptiform EEG was a research
topic since 1990 and the different papers show the various
stages of development of the signal processing tools
involved, [5]-[8].

The EEG signals used for testing our method were
those described in [9] and downloaded from [10].

There are four types of data sets, each one containing
100 files with 4096 samples, taken at a rate of 173.61 Hz,
which is in the 128-1024 Hz. range, as recommended in
[11]. First type of data are taken from a healthy subject, the
second from a subject that has the disease but is between
crises, the third set refers to the epileptogenic zone and the
last is recorded during the crisis. The first 1000 samples of
a typica EEG recording from a healthy person, as
described in [9], are presented in Fig. 1. The first 1000
samples were evidenced for clarity reasons; the signals
look quite the same for the rest of the samples. This remark
isalso valid for the rest of the figures.
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Fig. 1. Typical EEG signal from a healthy subject
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The same type of signal, for an epileptic subject
between the crises, which is slightly different from the one
inFig. 1, ispresented in Fig. 2.
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Fig. 2. The EEG from an epileptic subject between crises

The shape of the signal changes significantly in the
epileptogenic region, as shown in Fig. 3, aso for the first
1000 samples of the signal.
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Fig. 3. The EEG of the epileptogenic zone

The last type of data was the one taken during
epileptic seizure and looks like the one in Fig. 4.
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Fig. 4. The EEG signal during epileptic seizure
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From the above figures, it may be clearly seen that
there are strong differences between the four types of EEG
signals. We will show that the shape of these signals are
evidenced in the values of the fractal dimensions of the
signals and that the difference D., - D,, is significantly
changed for the signals from a healthy person but also for
the three different types for the ill subjects. between
seizures, in the epileptogenic zone and during the seizure.

The same treatment was applied to signals taken
according to the “10-20" system, [12], used in a Donchin
paradigm, [13]. It assumes evidencing lines or columns on
a 6x6 matrix with letters and numbers appearing on the
screen of the computer; the subject isinstructed to think of
a symbol and to react every time the line/column that
contains it is evidenced. This type of stimulus is an
infrequent one, and it usually generates a “spike” (evoked
potential) in the EEG signal, after approximately 300



milliseconds from its occurrence, hence its name: P300.
This study aims to individualize the place on the scalp that
has EEG signals with significantly higher difference D_, -
D,, and in this way to suggest another way to choose the
appropriate electrode for signal acquiring when dealing
with feature trandlation problems in brain computer
interfaces.

The fractal spectrum of the EEG signals as a measure
of their chaotic properties

The algorithm for computing the Rényi entropy was
programmed and running the program clearly showed the
differences between the four types of signals, asfollows: in
Fig. 5 the fractal spectrum of a healthy subject is shown.

Fig. 5. Thetypical fractal spectrum for a healthy subject

It is worth noticing the fact that Fig. 5 presents the
average values for all fractal spectrums that belong to the
data set for healthy persons. This average was found to be
in the same range with the one characterizing the periods
between seizures for ill persons, as shown in Table 1,
where only the maximum values are dightly higher in the
case of an ill person. It is aso worth noticing the fact that
the average values for D_.- D,, are, in both cases, closer to
those give by the maximum ones.

Table 1. Average vaues for al fractal spectrums

healthy ill
average min max | average | min max
D, 0.640 | 0517 | 0.714 | 0575 | 0.348 | 0.714
D., 1201 | 1144 | 1276 | 1186 | 1112 | 1362
D.-D, | 0560 | 0626 | 0561 | 0610 | 0.763 | 0.647
Fig. 6 presents the fractal spectrum of the EEG
signalsin the case of the epileptogene zone.
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Fig. 6. The typical fractal spectrum for the epileptogene zone
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Even if the average values are near the ones in Fig. 5,
noteworthy differences may be seen in Table 2 that
presents a comparison between the values for the fractal
spectrum of the EEG signals from healthy persons and the
one from the epileptogene zone of an ill subject.

Table 2. Comparison between the values for the fractal spectrum
of the EEG signals

healthy ill
average min max | average | min max
D, 0.640 0517 | 0.714 0551 | 0.155 | 1.070
D., 1.201 1144 | 1.276 1.380 | 1.118 | 3.260
D..- D, 0.560 0.626 | 0.561 0.829 | 0.963 | 2.190

In fact, all the values are higher in this case, but the
differences are obvious, especially in the case of the
maximum values, which are significantly greater.

The real difference may be perceived during seizures,
when the values characterizing the fractal spectrum are
significantly higher, even compared to the epileptogene
zone, asit can be seen from Table 3.

Table 3. Comparison when the values characterizing the fractal
spectrum are significantly higher

healthy ill
average min max | average | min max
D, 0.640 0517 | 0.714 0.730 | 0.168 | 1.195
D., 1.201 1144 | 1.276 2.654 | 1.342 | 5.042
D..- D, 0.560 0.626 | 0.561 1.923 | 1.174 | 3.846

As arule, the value of D_.- D,, during seizures is on
the average twice as high as the one for a healthy subject
and thisisaclear indicator of the state of illness.

The second part of the research concerning the fractal
spectrum was dedicated to the way in which it can be used
to choose which electrode is most suitable for signal
acquiring in a “10-20" system employed in a Donchin
paradigm. The signals were those obtained from
Wadsworth BCI Dataset, [14].

Fig. 7. The active dectrodes in a P300 acquisition system from
the point of view of the fractal spectrum

The available data sets were slightly modified so that
only the P300 parts of the signal to be processed. The
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Engineering. — Kaunas: Technologija, 2008. — No. 2(82). — P. 45-48.

The chaotic properties of the EEG signals are evidenced by means of fractal spectra. The method involved in computing is based on
the so-called Rényi entropy. The fractal spectra are clearly changed according to the state of the subject and this proved to be a good
indicator in preictal and ictal states of epileptic patients. Another possible application of the fractal spectrum is the one in which, in a
Donchin paradigm, active electrodes may be evidenced based on P300 evoked potentias. Ill. 7, bibl. 15 (in English; summaries in
English, Russian and Lithuanian).

A. M. Jlazap, P. V¥Ypcyrnean. HccrenoBanmsi mpuMeHeHHs: (paKTajbHOro cmekrpa curnaima EEG // Daextponuka n
anekTporexnuka. — Kaynac: TexHosorus, 2008. — Ne 2(82). — C. 45-48.

XaoTHYeCKHe CBOMCTBA CHTHAIOB 3JIEKTPOIHIE(ATOrpaMMBI CBUACTENBCTBYIOTCS ITOCPEACTBOM (PaKTANBHBIX CHEKTpoB. Merton
OCHOBAaH Ha TaK Ha3biBaeMoOW JHTpormu Rényi. MpakTanbHBIE CIEKTPHI SICHO M3MEHEHBI COTJIACHO COCTOSHHIO TpPEIMETa, M 9TO
XOPOIIMH MHIUKATOP COCTOSHUH 3IHJICNTHYECKUX MAlUEeHTOB. JIpyroe BO3MOXHOE NPUMEHEHHE (PAKTAIBHOIO CIEKTPAa OCHOBAaH Ha
napagurmMe Donchin'a, korma akTuBHBIC 37eKTPOABI Xapakrepusyercs notenimanamu P300. Vi 7, 6ubn. 15 (Ha aHIIIHHACKOM SI3BIKE;
pedepatbl Ha aHTIIHHACKOM, PYCCKOM H JIATOBCKOM 513.).

A. M. Lazar, R. Ursulean. EEG signaly fraktalinio spektro pritaikymo galimybés // Elektronika ir elektrotechnika. — Kaunas:
Technologija, 2008. — Nr. 2(82). P. 41-44.

Chaotiskas EEG signalo savybes galima stebéti naudojant fraktalini spektra. Skaic¢iuojamasis metodas remiasi vadinamaja Rényi
entropija. Fraktalinis spektras aiskiai kinta priklausomai nuo subjekto btisenos. Tai yra geras epilepsija serganciy pacienty buklés pries
priepuolj ir priepuolio metu indikatorius. Kitas galimas fraktalinio spektro pritaikymas — aktyviu elektrody stebésena remiantis P300
suzadintais potencialais ir Donchin' o paradigma. I1. 7, bibl. 15 (angly kalba; santraukos angly, rusy ir lietuviy k.).
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