
45

ELECTRONICS AND ELECTRICAL ENGINEERING
ISSN 1392 – 1215 2008. No. 1(81)

ELEKTRONIKA IR ELEKTROTECHNIKA

AUTOMATION, ROBOTICS

T125
AUTOMATIZAVIMAS, ROBOTECHNIKA

Simulation of Mechatronic Systems using Behavioural Hybrid Process
Calculus

T. Krilavičius
Department of Informatics, Vytautas Magnus University,
Vileikos str. 8, LT-44404 Kaunas; e-mail: T.Krilavicius@gmail.com

Introduction

Omnipresence of computers increased software
reliability requirements considerably. Consequently, it
stimulated interest in formal modelling and analysis of
diverse computer systems, among which substantial
position is taken by hybrid systems. Hybrid systems
combine continuous evolution and instant discrete changes.
Well-known examples of hybrid systems are software
controlled electromechanical systems, such as microwave
oven. However, pure mechanical systems, such as
bouncing ball or spring-mass system can be treated as
hybrid systems as well.

The growing interest in hybrid systems both in
computer science and control theory has generated a new
interest in models and formalisms that can be used to
specify and analyse such systems. A prominent framework
for hybrid systems is provided by the family of hybrid
automata models (hybrid automata [1], hybrid behavioural
automata [6], and hybrid input/output automata [10]).
More recently, process algebraic models have been put
forward as a vehicle for the study of hybrid systems [4, 2,
3].

Simulation is a de facto standard tool in both
academia and industry for analysis of hybrid systems. It
helps to detect potential weaknesses and errors, and
provides information on performance of system. There is a
number of simulation tools, which provide various
facilities for analysis of hybrid systems. Hybrid χ [18]
provides facilities for simulation of hybrid process
calculus. HyVisual [9] is a Java based visual modeller and
simulator for hierarchical continuous time dynamical and
hybrid systems. Dymola, Stateflow/Simulink [5] and 20-
Sim provide industrial strength facilities for simulation of
non-causal object oriented simulation language Modelica
[12], hierarchical formalism and bond graphs [17],
respectively.

We report a work in progress, a technique for
simulation of Behavioural Hybrid Process Calculus
(BHPC) [7]. BHPC is a process calculus that extends the
standard repertoire of operators that combine discrete

functional behaviour with features to also represent and
compose continuous-time behaviour. Dynamic behaviour
is represented by the evolution of variables, which are
typically defined in terms of differential equations.
Following [14], behaviour can be simply seen as the set of
all allowed real-time evolutions, or trajectories, of the
system variables. The operational semantics of the calculus
defines the transitions for the simulator. Choice operator
provides a way to describe nondeterministic choice among
processes. Concurrency is defined using parallel
composition. An adapted version of the expansion law is
used to solve parallel composition. Proposed simulation
technique is assessed on hybrid simulator Bhave prototype,
a part of Bhave toolset for hybrid systems modelling,
analysis and simulation.

Behavioural Hybrid Process Calculus

In this section, we introduce main concepts of
Behavioural Hybrid Process Calculus. See [7] for the
details and proofs.

Trajectories

The continuous behaviour of hybrid systems can be
seen as the set of continuous-time evolutions of system
variables. We will call them trajectories. We assume that
trajectories are defined over bounded time intervals (0,t],
and map to a signal space to define the evolution of the
system. The signal space W specifies the potentially
observable continuous behaviour of the system.
Components of the signal space correspond to the different
aspects of the continuous behaviour, like temperature,
pressure, etc. They are associated with trajectories
qualifiers that identify them.

Sometimes it is useful to define conditions on the end-

points of trajectories or the exit conditions. We will use 
to denote such conditions, as the restrictions on set of
trajectories (1)

 ))((|],0(: exit1exit uPWWuP n    . (1)

46

Hybrid Transition System

We define a hybrid transition system as a

collection cWASHTS  ,,,,, , where S is a state

space. The discrete transition relation SAS 

defines discrete changes annotated by actions (Aa). The

continuous-time transition relation SSc  links

continuous changes to trajectories ().

We introduce a language (2) for defining hybrid
processes.

PBBBfBaB H
A

Ii

i ||||| ||]|[.0:: 


 . (2)

Deadlock 0 is the process that does not show any
observable behaviour.

Action prefix a.B defines a process that starts with
action a and afterwards engages in B. Silent actions [11]
(denoted τ) are used to specify nondeterministic behaviour.

Trajectory prefix  )(.| fBf  models behaviour of

a process that executes a continuous trajectory. In
trajectory prefix definition f is a trajectory variable and Φ
is a set of trajectories. It takes a trajectory or a prefix of a
trajectory in Φ. If a trajectory or a part of it was taken and
there exists a continuation of the trajectory, then the
system can continue with a trajectory from the trajectory
continuations set. If a whole trajectory was taken, then the
system may continue with B, too.

We will extend notation to make use of trajectory

prefix more convenient  exit1 |, Pqq m  , where q1,…,

qm are trajectory qualifiers, which can be used to access
corresponding parts of trajectories. Moreover, the set of
trajectories can be defined in several different ways, e.g.
by ODE/DAE. We will allow such notation in the
trajectory prefix definition to bring out conditions on the
set of trajectories. Furthermore, we will allow defining the
set of trajectories directly in the definition of trajectory
prefix, where commas will be used to separate conditions.

We will use  to separate exit conditions, when it is
required.

Choice  Ii iB is a generalised nondeterministic

choice of processes. To generate the set we allow arbitrary
index sets I. It chooses before taking an action prefix or
trajectory prefix. Binary version of choice is denoted
B1+B2.

Parallel composition 21 || BB H
A specifies the

behaviour of two parallel processes. The operator
explicitly attaches the sets of synchronising action names A
and of synchronising trajectory qualifiers H.
Synchronisation on actions has an interleaving semantics.
Trajectory prefixes can evolve in parallel only if the
evolution of coinciding trajectory qualifiers is equal.

Recursion allows defining processes in terms of each
other, as in the equation B=P, where B is the process
identifier and P is a process expression that may only
contain actions and signal types of B.

Only a subset of complete language is introduced in
this paper. Some auxiliary functionality, such as renaming,
is presented in [7].

Congruence

One of the main tools to compare systems is a strong
bisimulation. The bisimulation for continuous dynamical
systems is presented in [19]. The process algebraic version
is discussed in [11]. A strong bisimulation for hybrid
transition systems requires both systems to be able to
execute the same trajectories and actions and to have the
same branching structure. Strong bisimulation for BHPC is
a congruence relation w.r.t. all operations defined above.
See [7] for the details.

Derived Operators

BHPC is an assembly language for a modelling of
hybrid systems. We add auxiliary constructs to increase
usability of the language.

We introduce parameterised action prefix

 


Vv vv vBaBa)(.. for convenience (as in [11]), e.g., for

value passing.
Sometimes it is useful to check some conditions

explicitly, and if they are not satisfied, to stop the progress

of process. With the guard construct BPred . , these

conditions can be given as a predicate.

Idling in BHPC is defined as  0|idle  tt  , where t

is a reserved variable. It does not manifest any observable
behaviour, but reacts as soon, as another process, which
communicates with the process, which follows the idling
period, invokes the follow-up process.

Simulation of BHPC

Simulation of hybrid systems combines continuous
and discrete simulation. Consequently, it should include
elements from both areas.

Simulation of discrete systems is usually substituted
by testing or verification in computer science. In contrast,
continuous simulation is regularly used in industry and is
well established scientific research object.

Unfortunately, it is not possible just to put together
discrete and continuous simulation techniques to get hybrid
simulation, because, in addition, it is necessary to
incorporate interaction of discrete and continuous worlds.

Our proposed technique for simulation of BHPC is
based on traditional process algebraic simulation, i.e. on
the correct application of structural operation semantics
(SOS) rules [13]. Essentially, operational semantics
provide a definition of stepwise execution of process
algebraic expression. Rules define all allowed executions
for each operator. However, some expressions require
recursive transformation before it is possible to simulate a
step. In addition, parallel composition requires a special
treatment. Usually an expansion law is used to resolve it
(we also use it), but in some cases linearization [16] is
used.

We present an abstract description due to space
limitations, see [7] for the proofs and details.

1. The system is initialised.
2. While a current simulation time is less than the
maximal simulation time and no other stop conditions

47

have occurred, a transition is taken and the state is
updated.

a. The process is transformed to so-called normal
form.
b. A non-deterministic choice is made to proceed
with discrete or continuous transition.

i. If the discrete transition is chosen, then one
of the discrete transitions is nondeterministically
selected and simulated.

ii. If the continuous transition is chosen, then
one of the continuous transitions is simulated.

3. When the simulation time has finished or other stop
condition has occurred, it is halted.

Discrete transition part is rather trivial. Taking
continuous transition involves certain complex symbolical
transformations of equations, and is limited by (external)
ODE/DAE solver, but is rather standard in continuous
simulation. Procedure of expression transformation to
normal form is specific to process algebras and SOS rules
based semantics. Most of it is almost directly based on
SOS rules, and just requires thorough bookkeeping.
However, parallel composition requires an expansion law
that is used to express the parallel composition as a choice
of processes.

Above defined algorithms are implemented in
prototype tool Bhave prototype, a part of Bhave toolset.
For more information about Bhave prototype and Bhave
toolset (http://fmt.cs.utwente.nl/tools/bhave.), see [8, 15, 20].

Example: Simple and Controlled Thermostat

We illustrate BHPC language and simulation
algorithm/tool with the following example.

17,5

18

18,5

19

19,5

20

20,5

21

21,5

22

22,5

0 5 10 15 20

Time

T
em

p
er

at
ur

e

A simple thermostat maintains the temperature in the
interval 18-22, while switching on and off in the intervals
18-19 and 21-22, correspondingly. The corresponding
model in BHPC is described in (3).

In process ThOff the heater is off and the trajectory
prefix defines the temperature fall. When the temperature
reaches the interval [tempOn, tempMin], the process can
perform action on and switch to the process ThOn.

Process ThOn analogously defines the period of
heating.

However, it is possible to upgrade such thermostat
without changing the specification itself. Let us add a
controller that observes temperature and forces the
thermostat to switch on and off at exactly 19 and 21,
correspondingly (4).

 

 

 
 )(,)0(|],0(:)(

,)0(|],0(:)(

)ThOff(.

.)(|)ThOn(

)ThOn(.

.)(|)ThOff(

)ThOff()(Thermostat

00On

00Off

0O0

0Off0

00

lhKllltll

Klllltll

loff

tempMaxltempOfflll

lon

tempMinltempOnlll

ll

n















(3)

 
 

),(||)ThOff(

)ermostat(UpgradedTh

),Control(..21)any(|

,.19)any(|)Control(

0,0

0

0

00

lControll

l

lofflll

onllll

l
offon







(4)

where any(l) is a special function that models an observer,
i.e. it accepts any behaviour for l. It works only in parallel
composition. Technically it just adds exit conditions to the
parallel composition of trajectory prefixes.

Results of simulation of the simple and controlled
thermostat are depicted in Fig. 1. The dashed line depicts
evolution of the simple thermostat and the solid line
depicts evolution of the coupled version.

Conclusions

In this paper we proposed a simulation technique for
Behavioural Hybrid Process Calculus. The calculus and
transitions system were introduced, operators for the
calculus were explained. We focussed discussion on the
hybrid simulation and presentation of calculus itself, and
did not delve into technical implementation details or case
study.

The current tool is built not just as a prototype of an
industrial tool, but as a hybrid ''sand-box'', a place to
experiment with BHPC and related developments.
Consequently, the architecture and implementation of the
tool are being designed in such a way that it is easy to
accommodate the changes in the calculus and to test the
algorithms developed for hybrid systems in BHPC
framework. Adaptable and well documented interfaces for
ODE/DAE solvers should be provided for experimenting
with different approaches for continuous-time behaviour
simulation.

Our plans include further development of process
algebra and simulation tool. We are planning to revise
BHPC according to the tool implementation and case
studies results. We would like to extend visualisation part,
namely, investigate visualisation of the model itself.
Especially attractive are object diagrams where objects are
represented by mnemonically shaped icons. Moreover, we
are investigating a novel hybrid simulation visualisation
approach, message sequence plots (MSP), introduced in [8,
7]. We believe that MSP could be very useful when it is

Fig. 1. Temperature changes for simple and upgraded thermostat

;

;

;

;

;

48

important to see not only communication or continuous
evolution separately, but to see how they influence each
other.

References

1. Alur R., Courcoubetis C., Henzinger T., Ho P.-H. Hybrid
automata: An algorithmic approach to the specification and
verification of hybrid systems // Hybrid Systems. – 1993. –
Vol. 736. – P. 209–229.

2. Bergstra J., Middelburg C. Process algebra for hybrid
systems // Theoretical Computer Science. – 2005. - Vol. 335 -
P. 215-280.

3. Brinksma E., Krilavičius T., Usenko Y. S. Process
algebraic approach to hybrid systems // Proc. of 16th IFAC
World Congress. – Prague. – 2005. – P. 6.

4. Cuijpers P., Reniers M. Hybrid process algebra // Tech. rep.
– DMCS, Tech. Univ. of Eindhoven (TU/e). – 2003. – P. 120.

5. Hamon G., Rushby J. An operational semantics for
Stateflow // FASE. – 2004. – P. 229–243.

6. Julius A. On Interconnection and Equivalence of Continuous
and Discrete Systems: A Behavioral Perspective / PhD
thesis.– SSCG, Univ. of Twente. – 2005. – 173 p.

7. Krilavičius T. Hybrid Techniques for Hybrid Systems / PhD
thesis.– FMT, Univ. of Twente. – 2006. – 192 p.

8. Krilavičius T., Schonenberg M. H. Discrete simulation of
behavioural hybrid process calculus // IFM2005 Doctoral
Symposium on Integrated Formal Methods. – 2005. – P. 33–
38.

9. Lee E., Zheng H. Operational semantics of hybrid systems //
Hybrid Systems: Computation and Control. – 2005. – P. 25–
53.

10. Lynch N., Segala R., Vaandrager F. Hybrid I/O automata //
Information and Computation. – 2003. – P. 105–157.

11. Milner R. Communication and concurrency. – Prentice-Hall,
Inc. – 1989. – P. 37–43.

12. Modelica Association. Modelica – A Unified Object
Oriented Language for Physical Systems Modelling:
Language Specification. – 2005. – 137 p.

13. Plotkin G. A Structural Approach to Operational Semantics
// Tech. Rep. DAIMI FN-19. – University of Aarhus. –
1981.– 133 p.

14. Polderman J., Willems J. C. Introduction to Mathematical
Systems Theory: a behavioral approach. – Springer. – 1998. –
455 p.

15. Schonenberg M. H. Discrete simulation of behavioural
hybrid process algebra / Master thesis.– Univ. of Twente. –
2006. – 125 p.

16. Usenko Y. S. Linearization in μCRL / PhD thesis.– Tech.
Univ. of Eindhoven (TU/e). – 2002. – 188 p.

17. van Amerongen J., P.Breedveld P. Modelling of physical
systems for the design and control of mechatronic systems //
Annual Reviews in Control. – 2003. – Vol. 27, No. 1. – P.
87–117.

18. van Beek D., Man K., Reniers M., Rooda J., Schiffelers R.
Syntax and consistent equation semantics of hybrid chi //
Tech. Rep. – Tech. Univ. of Eindhoven (TU/e). – 2004.

19. van der Schaft A. Bisimulation of dynamical systems //
HSCC. – 2004. – Vol. 2993. – P. 555–569.

20. van Putten A. Behavioural hybrid process calculus parser
and translator to Modelica / Master thesis. – Univ. of Twente.
– 2007. – 63 p.

Submitted for publication 2007 10 16

T. Krilavičius. Simulation of Mechatronic Systems using Behavioural Hybrid Process Calculus // Electronics and Electrical
Engineering. – Kaunas: Technologija, 2008. – No. 1(81). – P. 45–48.

The growing interest in hybrid systems both in computer science and control theory has generated an interest in formalisms that can
be used to specify and analyse such systems, systems that combine continuous-time and discrete behaviours. Simulation is one of the
tools to obtain insight in dynamical systems behaviour. Its results provide information on performance of system, are helpful in
detecting potential errors, and are handy in choosing adequate control strategies and parameters. We report a work in progress, a
technique and a prototype for simulation of Behavioural Hybrid Process Calculus, an extension of process algebra suitable for the
modelling and analysis of hybrid systems. Ill.1, bibl. 20. (in English; summaries in English, Russian and Lithuanian).

Т. Крилавичюс. Имитация мехатронных систем используя процесс алгебры для моделирования и анализа гибридных
систем // Электроника и электротехника. – Каунас: Технология, 2008. – № 1(81). – C. 45–48.

Растущий интерес к гибридным системам в информатике и автоматике вызвал интерес к новым формализмам
предназначенным для моделирования и имитации систем, описывающих аналоговое и дискретное поведение. Имитационное
моделирование позволяет больше узнать о динамических системах. Результаты имитационного моделирования показывают
эффективность системы, позволяют находить ошибки и подобрать подходящий метод и параметры управления. Мы описываем
технику и прототип для имитационного моделирования процесс алгебры для моделирования и анализа гибридных систем
“Behavioural Hybrid Process Calculus”. Ил.1, библ. 20 (на английском языке; рефераты на английском, русском и литовском яз.)

T. Krilavičius. Mechatroninių sistemų imitavimas naudojant BHPC imitacinio modeliavimo metodiką // Elektronika ir
elektrotechnika. – Kaunas: Technologija, 2008. – Nr. 1(81). – P. 45–48.

Augantis susidomėjimas hibridinėmis sistemomis informatikoje ir automatikoje skatina domėtis naujais formalizmais, skirtais
hibridinėms sistemoms jungiančioms tolydų ir diskretų elgesį, modeliuoti ir imituoti. Imitavimas yra įrankis, leidžiantis sužinoti daugiau
apie dinaminių sistemų elgseną. Imitavimo rezultatai suteikia informaciją apie sistemos efektyvumą, leidžia aptikti klaidas ir parinkti
tinkamą valdymo strategiją ir parametrus. Straipsnyje pateikiama šiuo metu atliekamo tyrimo rezultatai: „Behavioural Hybrid Process
Calculus“ (BHPC) imitacinio modeliavimo metodika ir įrankio prototipas. BHPC yra klasikinių procesų algebrų išplėtimas, skirtas
hibridinių sistemų modeliavimui ir analizei. Il.1, bibl. 20 (anglų kalba; santraukos anglų, rusų ir lietuvių k.).

