
 37

ISSN 1392 - 1215 ELEKTRONIKA IR ELEKTROTECHNIKA. 2004. Nr.7 (56)

T 170 ELEKTRONIKA

Testing of FPGA Logic Cells

E. Bareiša, V. Jusas, K. Motiejūnas, R. Šeinauskas

Software Engineering Department, Kaunas University of Technology
Studentų St. 50-406, Kaunas, Lithuania, e-mail: eduardas.bareisa@ktu.lt

1. Introduction

 Field programmable gate arrays (FPGAs) are digital
devices that can implement logic circuits required by users
in the field. As a result, most prototypes and many
production designs are now implemented on FPGAs,
making hardware implementation economically feasible
even for those applications which were previously
restricted to software implementation. There are many
different architectures of FPGAs driven by different
programming technologies. One important class is the
SRAM based FPGAs, also called the look-up table (LUT)
FPGAs. Such a programmable circuit consists of a matrix
of logic modules and interconnection elements.
 As the use of FPGAs in commercial products
becomes more widespread, the importance of reliability
and test obtains a great value. For reprogrammable FPGAs
two types of testing can be considered [1]. One is the
testing of unprogrammed FPGAs which is accomplished
by the producer right after manufacturing (Manufacturing-
Oriented Test Procedure, MOTP). The other is the testing
of the programmed FPGA which is accomplished by the
user when the device is deployed by a given application
(Application-Oriented Test Procedure, AOTP). An
unprogrammed FPGA can realize many different
programmed FPGAs by loading different programs.
Theoretically, to test the unprogrammed FPGA, we might
have to test all the programmed FPGAs obtained from the
unprogrammed FPGA. FPGAs appear as very complex
circuits and all papers that consider the testing of FPGA
use a classical divide and conquer approach. Usually each
paper targets a specific FPGA part: the logic cells [2, 3],
the memory cells [4], the interconnect cells [5]. All above
mentioned papers are devoted to unprogrammed FPGAs.
There are only few papers devoted to programmed FPGAs
[1, 6, 7]. These papers also use the same divide and
conquer approach and consider faults only in the logic
cells. It is possible to distinguish among them only two
slightly different approaches. Both of them agree that the
test vectors computed by a gate level test pattern generator
with the gate level circuit netlist and stuck-at faults
produce a low coverage according to the FPGA
implementation. A FPGA logic implementation can be
used for the test pattern generation and leads to better
results. The papers [1, 6] consider the adoption of the

classical test pattern generator investigating the active
logic cell FPGA description of the application configured
in FPGA. But a FPGA description is by definition much
more complex than the circuit netlist because of the inherit
flexibility of the FPGA. Consequently, the authors [1, 6]
noticed that the initial FPGA description has a huge
number of application configuration (AC) redundant faults.
Therefore they defined different classes of AC-redundant
faults: a) AC-redundant faults due to logical redundancy;
b) AC-redundant faults due to unused logic; c) AC-
redundant faults due to the constant signal. Elimination of
redundant faults from the list gives the reduction from 4%
to 93%. But in that approach, the model describing the
possible faults affecting the configuration memory is
approximate, since it does not consider the faults affecting
the values of the memory cells composing each LUT. It
considers only the faults affecting the value of the output
of the LUT.
 On the other hand, the approach [7] extends the set of
faults in comparing with [1, 6] by adding the faults
affecting the LUT bit cells. But the paper [7] does not
propose the method how to generate the test patterns to
detect these faults. The paper only states the fact that the
fault coverage is generally low of the faults which affect
the LUT bit cells when the classical test pattern generator
is used. The paper also demonstrates the fact that there is
almost no difference which test pattern generator to use:
the gate-level commercial ATPG or a RT-level academic
ATPG.
 In this paper, we propose an approach of the
exhaustive testing of logic cells for an FPGA configured
circuit to implement a given application. In our approach,
we apply the exhaustive test pattern generation for every
logic cell. Such an approach lets to neglect the inner
structure of the logic cell and test patterns generated
according to our approach are able to detect all inner
defects of logic cells that could be detected by a single test
pattern. As experimental results show, the exhaustive
testing cannot be established for all logic cells due to
problems controllability or observability. Reconfiguring an
application-oriented FPGA into a tree like structure can
solve this problem, but the FPGA configuration process is
an excessively time-consuming.
 The paper is organized as follows. Section 2
introduces a new model of the configurable logic block.

 38

Section 3 analyzes the process of the test pattern
generation for the FPGA configured circuit. Section 4
presents and comments experimental results. Section 5
draws main conclusions.

2. The circuit transformation

 In AOTP approach the user needs to test only the part
of the FPGA used by the configured application. We
restrict our investigation to CLBs only. But as distinct
from the approaches [1, 6, 7] we do not investigate the
structure of the CLB. Such an approach relies on our
model of the CLB. Tests constructed according to our
model of the CLB ensure the detection of all faults related
to the inner structure of the CLB that can be detected by a
single test pattern.

The testing of CLBs is similar to the classical TPG
problem for ASIC circuits. But in the context of FPGA
implementation, test vectors computed by classical TPG
tool with the circuit netlist and adequate fault models
produce a very low fault coverage [6]. This is mainly due
to the fact that the circuit netlist used in the design phase
before implementation into the FPGA does not contain any
structural information on the final physical FPGA. A more
accurate approach needs to consider – the real circuit
mapped into a FPGA and a suitable fault model.

For a CLB, a fault may occur at the memory matrix,
decoder, inputs and outputs of a CLB. A faulty matrix has
some memory cells that are incapable of storing the correct
logic values (stuck-at 1 or stuck-at 0 may occur at a
memory cell). If a fault occurs at the decoder, then
incorrect access, non-access or multiple access faults may
occur. Consider an example. Let's say, the CLB under
consideration accomplishes two inputs AND function. To
detect all its single stuck-at faults, we have to construct 3
test patterns (0,1), (1,0), (1,1). The last possible test pattern
(0,0) is not included into the test sequence. Let's say, this
CLB because of a memory bit fault changes the function to
NOR (Table 1). As we can see from the fifth column of
Table 1, such a change of the function can be detected by
the third test pattern. So, no additional test patterns are
needed to detect such a change of the function. But if the
CLB function because of the LUT memory bit fault
changes to NOT(A) XOR B, such a fault cannot be
detected by the first three test patterns. Only the test
pattern (0, 0) which was initially unused can detect such a
change of the CLB function.

Table 1. Test patterns for 2 inputs CLB

A B A AND B A NOR B NOT(A) XOR B
0 1 0 0 0
1 0 0 0 0
1 1 1 0 1
0 0 0 1 1

Consider another example, presented in [7], where

the CLB function L = (A AND B) OR C is given. All
single stuck-at faults can be detected by four test patterns
(Table 2): the first three test patterns {1, 2, 3} and one test
pattern from the last three patterns {4a, 4b, 4c}. To detect
the fault C Sa0, any of test patterns 4a, 4b or 4c can be
used. There are unused four test patterns. Let's say, the

CLB because of the LUT memory bit fault changes the
function to LF = (A AND B) OR (NOT(B) AND C). An
interesting situation arises. If an initial test set included the
test pattern number 4a, this fault would be detected. But if
an initial test set included a test pattern 4b or 4c, the fault
would not be detected. There is no guarantee that the test
pattern generator would include the test pattern number 4a.
Therefore, in general, the fault is not detected by the initial
four test patterns.

Table 2. Test patterns for 3 inputs CLB
N A B C NOT B L LF
1 0 1 0 0 0 0
2 1 0 0 1 0 0
3 1 1 0 0 1 1
4a 0 1 1 0 1 0
4b 1 0 1 1 1 1
4c 0 0 1 1 1 1

Note that a standard CLB usually has 4 address

inputs. It means that more complicated functions than in
case of 2 or 3 inputs can be constructed. Consequently,
more changes because of memory bit faults can be made to
the original function. These faults as we saw from the
previous two examples cannot be detected by the test
patterns devoted to detect all single stuck-at faults of the
original function. Therefore we suggest to apply the
exhaustive testing of the CLB function. Only the
exhaustive testing of CLB ensures detecting of all possible
function changes. If a CLB has 4 address inputs, so it has
to be checked with all 24 different test patterns.

Now a single problem arises – how to generate
exhaustive test patterns for each CLB of the FPGA mapped
circuit. One possible solution is to use the classical stuck-at
fault test pattern generator. Since stuck-at fault test
generation tools are mature and highly efficient, it is
conceivable that utilizing a stuck-at fault test generation
tool for the exhaustive testing of CLB would be very
effective. But the classical test pattern generator is able to
generate test patterns only for single stuck-at faults.
Therefore, there is a need for the circuit transformation. A
circuit has to be transformed in such a way that this
transformation would not change the function of the circuit
and would compel the test pattern generator to test
exhaustively every CLB in the circuit. A circuit
transformation should transform a given circuit into
different one before the test pattern generation. Then tests
are generated for the transformed circuit. After that, the
generated tests for the transformed circuit are directly
applied without transformation for the original circuit.

We suggest to change every 2 inputs CLB by the
circuit presented in Fig.1. This transformation satisfies all
restrictions (the transformation of the circuit does not
change the function of the circuit, the test pattern generator
is compelled to test exhaustively every CLB in the circuit)
presented in the above paragraph. Let's consider this
circuit. As we see from Fig.1 every 2 inputs CLB is
changed by the CLB itself and a multiplexer. Inputs of the
CLB become controlling inputs of the multiplexer. The
output of the CLB is connected to every data input of the
multiplexer. Stuck-at faults are injected only on the data
inputs of the multiplexer. So we have 8 stuck-at faults on

 39

the inputs of the multiplexer. To test stuck-at faults on the
first input of the multiplexer, the test generator has to
assign to the controlling inputs test pattern (0, 0). But these
inputs are also inputs of the CLB. So the inputs of the CLB
also get the combination (0,0). To test stuck-at faults on
the second input of the multiplexer, the test generator has
to assign to the controlling inputs test pattern (0, 1). In
such a way, the test generator provides all 4 combinations
to the inputs of the CLB. Such a test is an exhaustive test
of the address inputs of the CLB. Therefore the
transformation presented in Fig.1 ensures the exhaustive
testing of the 2 inputs CLB. The same principle of the
transformation is applicable to any number inputs of the
CLB.

 A1
 L M F
 A2 U
 X

C
L
B

Fig. 1. The transformed 2 inputs CLB

3. Test pattern generation

 It is necessary to notice that some faults in the
proposed model are redundant. Consider the transformed
CLB in Fig.1. As we remember the faults are injected on
the data inputs of the multiplexer. Let's say CLB
implements 2 inputs AND function. Then test pattern (0, 0)
implies at the output of the CLB value 0 and this pattern
for the multiplexer selects the first data input which has the
value 0. Consequently, the fault Sa1 on the first data input
of the multiplexer can be detected. But there is no test to
detect the fault Sa0 on this input, because there is no
possibility to provide the value 1. All other test patterns
select other data inputs of the multiplexer. The test pattern
(0, 1) implies the value 0 at the output of the CLB, selects
the second data input of the multiplexer and can detect the
fault Sa1 on this input. The fault Sa0 on the second data
input can not be detected as well. The similar situation is
with the other two test patterns. Initially we proposed to
inject 8 stuck-at faults on the inputs of the multiplexer. But
as we see, half of them is redundant. This is true for any
function of the CLB. If 2 inputs CLB implements AND
function redundant faults are:

• Sa0 on the first data input of a multiplexer;
• Sa0 on the second data input of a multiplexer;
• Sa0 on the third data input of a multiplexer;
• Sa1 on the fourth data input of a multiplexer.

If 2 inputs CLB implements OR function redundant faults
are:

• Sa0 on the first data input of a multiplexer;
• Sa1 on the second data input of a multiplexer;
• Sa1 on the third data input of a multiplexer;
• Sa1 on the fourth data input of a multiplexer.
Thus redundant faults depend on the function of the

CLB. Therefore there are two approaches for the test
pattern generation: a) blind approach; b) targeted approach.

In the blind approach, the functions of the CLB are not
taken into account. Two faults are injected on every data
input of the multiplexer. When the test pattern generator is
not able to find a test for the target fault such a fault is
declared as untestable. Of course, there is a possibility to
make an improvement – if a test is already constructed for
one fault of the input, another fault of this input can be
declared as redundant and there is no need to generate a
test for this fault. But we know that a test pattern generator
is adopted to find test for the target fault. A test pattern
generator has to spend a lot of time to conclude that the
target fault is untestable. Therefore a blind approach has
two deficiencies:

• spends a lot of time (sometimes hours) trying to
construct a test for a redundant fault when before the test
generation there is a possibility to identify that there is no
test for such a fault.

• can not distinguish between redundant and
untestable faults.

From the first sight the second conclusion may seem
wrong. It is possible to argue that when a test constructed
for one fault, the other fault of this input can be declared as
redundant despite of the order of the generation for these
faults. This is true when a test is constructed for one fault.
But there can be situations when there is no possibility to
find the test for both faults of the input because the input is
not controllable or the output is not observable. In this
situation, there is no possibility to distinguish which fault
is redundant without considering a function of the CLB.

We believe the targeted approach is more preferred.
In the targeted approach, the preprocessing step is taken
before the test pattern generation. The functions of the
CLB are analyzed and redundant faults are excluded from
the list. The redundant faults will not be shown in the fault
coverage statistics. In this case, if a test pattern generator is
not able to construct a test for the target fault, this fault is
really untestable.

A very similar approach for the exhaustive testing of
high-level modules is applied in papers [8] where the
model of the input pattern (IP) fault is presented. But these
papers differ in the following:

• they do not target FPGA;
• the application of the multiplexer has the same goal

but the multiplexer is adopted in a different manner.
We believe that our way of the adoption of the

multiplexer is much simpler. A definition [8] of the IP fault
model when a high-level module has a single output
matches the faults used in our approach, therefore in the
following we will use this term in order to distinguish from
the classical stuck-at faults. Each IP fault of the module
with a single output corresponds to the single input stimuli
of the module. The detecting of all IP faults of the module
corresponds to the exhaustive testing of the module.

4. Experiments

In the experiments, we used circuits from the
ISCAS'85 benchmark suite. The circuits were mapped into
FPGA using the SynopsysTM synthesis tool and VirtexTM-II
library. Tests for the transformed circuit were generated by
the SynopsysTM test generation tool TetraMaxTM.

 40

 The test generation was carried out for three circuits
from the benchmark suite ISCAS'85: c432, c880 and
c5315. The numbers of CLBs of all three circuits are
presented in Table 3.

Table 3. The CLBs of FPGA configured circuits
Circuit 2 inputs

CLB
3 inputs
CLB

4 inputs
CLB

Total

C432 11 10 50 71
C880 21 21 79 121
C5315 109 62 319 490

The results of the test generation for IP faults are

presented in Table 4. The total number of IP faults is the
total number of the input stimuli of CLB implied by the
exhaustive testing and can be counted as follows: the
number of 2-inputs CLBs multiplied by 22 plus the number
of 3-inputs CLBs multiplied by 23 plus the number of 4-
inputs CLBs multiplied by 24. The total number of IP faults
is calculated according to the figures in Table 3.

Table 4. Test generation for FPGA configured circuits

Circuit Total Detect Rdun Rdun %
FPGA

Rdun %
gate lev

C432 924 745 179 19.37 9.6
C880 1516 1442 74 4.87 6.1
C5315 6036 5392 644 10.67 15.8

The column under name "Rdun % (FPGA)" of Table

4 shows that every circuit has some fraction of
redundancy. The proof of the existence of the redundancy
costs some efforts. We would like to pay attention to the
fact that tests were generated by the automatic test pattern
generator. Such a generator usually abandons some faults
due to run time restrictions. The similar situation was in
our case. When a fault is abandoned, it is not clear if this
fault is untestable or hard-to-detect. To resolve this
situation the model of the transformed circuit was
minimized by deleting multiplexers for CLBs that did not
have undetected faults. Then the test generation for
undetected faults was repeated. The process of
minimization and generation was repeated several times.
When the minimization did not lead to the solution the
time of generation for a single fault was increased. The
increase of time for a single fault was repeated until there
were no abandoned faults. Of course, in some cases the
time of the test generation increased from few seconds to
hours, but therefore we can say for sure that undetected IP
faults are redundant.

The last column of Table 4 is presented for
comparison purposes. It shows a redundancy at gate level
of the circuit. The numbers of this column were taken from
the paper [8]. As we can see the tendency of the
redundancy of IP faults for FPGA mapped circuits and
their gate level equivalents is quite different. The only
circuit c880 has similar numbers while the other two
circuits have very different numbers. Such a result only
confirms the fact that the FPGA implementation of the
circuit is very different from its gate level equivalent.

The faults that are untestable in the given application
of the FPGA mapped circuit may be testable in the other
configuration. A configuration that will have no untestable
faults is a tree like structure of the circuit. Therefore the

untestable faults of the given application can be easily
tested if the CLBs of the given application were
reconfigured into a tree like structure. Of course, it needs
to note that such a reconfiguration changes the initial
function of the given application and a configuration
process is excessively time-consuming.

 Table 5. The comparison of test lengths

Circuits No RC No R1 No RG No B2 No B3
C432 232 57 73 122 1123
C880 216 62 92 379 4955
C5315 332 130 168 1113 4598

R1 – The non-redundant ISCAS’85 benchmark circuit
RG – The gate level replacement of CLBs of FPGA
RC – FPGA configured circuit
B2 – Black Box model 2D matrix
B3 – Black Box model 3D matrix

The length and the coverage of the generated test
sequence for the FPGA mapped circuit were compared
with appropriate sizes of test sequences for other
implementations of the circuit. The comparison of lengths
of test sequences is presented in Table 5. We used for
comparison the gate level tests of the original gate level
circuit (R1), the tests for gate level replacement of the
FPGA mapped circuit (RG). The latter implementation was
included in the hope that it would have results of the test
generation similar to the FPGA mapped circuit constructed
of CLBs. As we will see later this hope did not stand – this
implementation behave like the other gate level
implementations. If were compared the lengths of tests
only of these three implementations, the longest tests are of
FPGA mapped circuits which were checked by the
exhaustive testing of all input stimuli (RC). We also
included for comparison tests generated according to the
black box model of the circuit on the base of a two
dimensional matrix (B2) [9] and on the base of a three
dimensional matrix (B3) [10]. These tests are longer than
for the FPGA mapped circuit, especially tests generated on
the base of a three dimensional matrix. But we would like
to pay attention that tests generated according to the black
box model do not take into account the structure of the
circuit. When the structure of the circuit is known it is
possible to select quite a smaller subset of the initial set by
means of the fault simulation.

The experiment shows that the exhaustive testing of
CLBs cannot be established. Therefore the decision was
made to analyze the reasons of this phenomenon. The
circuit C432 was chosen for the experiment. The CLBs of
the mapped into FPGA circuit C432 were leveled
according to their distance to the primary inputs. Then the
CLBs were grouped into groups according to their level
and their number of inputs. The groups were formed of
three consecutive levels of CLBs that an information
would be presented in manageable quantities. The results
are presented for each such group separately in Table 6. As
we see only the first group of CLBs which is located
nearest to the primary inputs has the 100% coverage of IP
faults. Therefore the investigation was carried out to
understand why IP faults of other groups are not fully
detectable. All outputs of all CLBs were made like primary
outputs. That ensures the propagation of all input IP faults

 41

to the primary outputs. Such an experiment allows to
distinguish between the problems of controlling the values
on the inputs of the CLBs and propagating these values to
the primary outputs. The experiment showed that none new
group got a 100% coverage of IP faults. An increase was
observed only for the groups of levels 10-12 and levels 13-
15. The increase for the whole circuit was observed only
from 80.63% to 84.30% of the IP fault coverage. 15.70%
of IP faults were untestable because there was no
capability to set an appropriate stimuli on the inputs of the
CLB, 3.73% (84.30% - 80.63%) of IP faults were
untestable because their effects were not propagated to the
outputs of the circuit. It means that the function of the
circuit restricts the capabilities to construct a certain
stimuli on the inputs of the CLBs. The propagation of the
stimuli to the primary outputs is a smaller problem.

Table 6. Results of C432
Levels 2 in 3 in 4 in Total (%)

Number of CLB 8 0 3 11
Total IP faults 32 0 48 80
Detected 32 0 48 80 100

1-3

Undetected 0 0 0 0
Number of CLB 0 4 12 16
Total IP faults 0 32 192 224
Detected 0 17 166 183 81.69

4-6

Undetected 0 15 26 41 18.31
Number of CLB 0 5 14 19
Total IP faults 0 40 224 264
Detected 0 15 170 185 70.07

7-9

Undetected 0 25 54 79 29.93
Number of CLB 0 1 13 14
Total IP faults 0 8 208 216
Detected 0 8 158 166 76.85

10-12

Undetected 0 0 50 50 23.15
Number of CLB 3 0 8 11
Total IP faults 12 0 128 140
Detected 12 0 119 131 93.57

13-15

Undetected 0 0 9 9 6.43
Number of CLB 11 10 50 71
Total IP faults 44 80 800 924
Detected 44 40 661 745 80.63

Total

Undetected 0 40 139 179 19.37

When the tests were constructed for all considered
implementations we crossed over the tests and the
implementations. The results are presented in Table 7 and
Table 8. Table 7 shows the results of the application of
tests of various implementations to detect IP faults. We
note that only testable IP faults were used in the
experiment. These results were separated because the
considered faults in this implementation are different from
all the other implementations. The faults of the
implementation RC denote IP faults of CLBs meanwhile
the faults of all the other implementations are classical
stuck-at faults. The tests generated according the black box
model can detect 96.56% of IP faults (2D matrix) and
99.35% of IP faults (3D matrix). These numbers are quite
higher than the numbers of the other implementations
which were gate level except the tests that were targeted to
the IP faults.

Table 8 includes the results of detecting stuck-at
faults of various implementations by test patterns
generated according to various models. The

implementation RG (the gate level replacement of CLBs of
FPGA) unlike the other implementations had redundant
faults. These faults are excluded from the list of faults and
their number is shown separately after the sign "+" in the
line "#faults". We also included in this investigation two
extra implementations: R2 – the synthesized original
circuit on the base of library class.db, and R3 – the
synthesized original circuit on the base of the library
and_or.db. The tests were not constructed for these
implementations separately.

Table 7. Testing of FPGA mapped circuits
Circuit #IP

faults
RC
%

R1
%

RG
%

B2
%

B3
%

C432 745 100 79.33 71.01 78.12 96.37
C880 1442 100 76.63 86.34 95.90 98.75

C5315 5392 100 92.10 94.20 99.29 99.92

Table 8. The test generation for stuck-at faults

Circuits Implementations
 Test R1 R2 R3 RG
C432 # faults 507 420 460 430+9

R1 100% 99.05% 99.78% 98.37%
RG 99.21% 99.29% 100% 100%

RC 99.80% 99.76% 100% 100%
 B2 96.05% 97.85% 98.69% 96.27%
 B3 100% 100% 100% 100%
C880 # faults 942 854 928 970+48

R1 100% 99.88% 100% 98.25%
RG 99.79% 100% 100% 100%

RC 99.79% 99.88% 99.89% 100%
 B2 99.89% 99.88% 99.89% 99.89%
 B3 100% 100% 100% 100%
C5315 # faults 5248 3875 4130 3931+92

R1 100% 99.74% 99.76% 99.47%
RG 99.09% 99.41% 99.64% 100%

RC 99.68% 99.95% 100% 100%
 B2 100% 100% 100% 100%
 B3 100% 100% 100% 100%

The tests B3 suit best of all for different

implementations. But we do not have to forget that the
purpose of these tests is just the same – to suit to any
implementation of the given function. The diversity of tests
B2 and tests RC is comparable. The tests B2 quite well suit
for the implementation RC of the circuit, except the circuit
C432. The tests RC (IP faults) show a very high fault
coverage (aproximately 100%) for all circuits at the gate
level implementation. It means that tests generated for IP
faults suits very well for any implementation of the given
circuit.

5. Conclusions

The paper proposes a testing approach for an
FPGA configured circuit to implement a given application.
This approach is based on the exhaustive testing of every
logic cell. The exhaustive testing of logic cells ensures the
detection of all defects in the inner structure of the logic
cell. This does not depend on what configuration of the
inner structure of the logic cell is used. The exhaustive
testing of logic cells detects all defects that could be

 42

detected by a single test pattern. But the length of the test
is increased and a construction of such test requires some
extra time to prove that certain combinations are
untestable. The structure of the circuit restricts the
capabilities of checking every logic cell in the circuit
exhaustively. The experimental results showed that the
exhaustive tests of the FPGA mapped circuit are 3.13 times
longer in average than the tests for the equivalent gate
level circuit. The tests of the gate level circuit can detect
87.90% of input patterns faults in average. The fault
simulation experiments indicated that tests generated to
detect input patterns faults have a strong tendency to detect
non-targeted faults. These tests can detect 99.81% stuck-at
faults in average of various implementations of equivalent
gate level circuits. Our work proved that there is no need to
consider internal faults of FPGA logic cells.

References

1. Renovell M., Portal J.M., Faure P., Figueras J., Zorian Y.

Analyzing the Test Generation Problem for an Application-
Oriented Test of FPGAs // Proceedings of the IEEE European
Test Workshop. – Cascais, Portugal, 2000. – P. 157–162.

2. Šeinauskas R., Bareiša E. A Simulation-Based Test Patern
Selection // Information technology and control. ISSN 1392-
124X. – Kaunas: Technologija, 1997. – No.1(4). – P.13-18.

3. Renovell M., Portal J.M., Faure P., Figueras J., Zorian Y.
Minimizing the number of Test Configurations for different
FPGA families // IEEE 8th Asian Test Symposium. – Shangai,
China, November 1999. - P.363-368.

4. Michinishi H., Yokohira T., Okamoto T., Inoue T.,
Fujiwara H. Testing for the Programming Circuits of LUT-
based FPGAs // IEEE 6th Asian Test Symposium. –
November 1997. – P. 242-247.

5. Stroud C., Wijesuraya S, Hamilton C., Abramovici M.
Built-In Self Test of FPGA Interconnect // International Test
Conference. Washington, USA, Oct. 18-23, 1998. - P.404-
411.

6. Renovell M., Portal J.M., Faure P., Figueras J., Zorian Y.
Some Experiments in Test Pattern Generation for FPGA-
Implemented Combinational Circuits // Proceedings of IEEE
12th Brazilian Symposium on Integrated Circuit Design. –
Manaus, Brazil, 2000. – P.3–8.

7. Rebaudengo M., Sonza Reorda M., Violante M. A New
Functional Fault Model for FPGA Application-Oriented
Testing, DFT 2002 // IEEE International Symposium on
Defect and Fault Tolerance in VLSI Systems. - Vancouver,
Canada, November 6-8, 2002. – P.372–380.

8. Blanton R. D., Hayes J. P. On the properties of the input
pattern fault model // ACM Transactions on Design
Automation of Electronic Systems (TODAES). Volume 8,
Issue 1, January 2003. - P.108-124.

9. Jusas V., Seinauskas R. Automatic Test Patterns Generation
for Simulation-based Validation. Proc. of the 8-th Biennal
Baltic Electronics Conference. ISBN 9985-59-292-1. Tallinn
Technical University. - Tallinn, Estonia, October 6-9, 2002. -
P.295-299.

10. Jusas V., Seinauskas R., Paulikas K. Procedures for
Selection of Validation Vectors on the Algorithm Level //
Digest of papers of 2nd IEEE Latin-American Test Workshop.
- Cancun, Mexico, February 11-14, 2001. - P.90-95.

 Pateikta spaudai 2004 06 02

E. Bareiša, V. Jusas, K. Motiejūnas, R. Šeinauskas. FPGA loginių ląstelių testavimas // Elektronika ir elektrotechnika. - Kaunas:
Technologija, 2004. - Nr. 7(56). – P.37–42.

Pagamintoms FPGA testuoti naudojamos kelios konfigūracijos ir konfigūruojami loginiai blokai (KLB) tikrinami parenkant visus
rinkinius. Kai FPGA jau turi nustatytą funkciją, jai tikrinti visiško perrinkimo rinkiniai taip pat būtų labai pageidautini, nes reikia
patikrinti visus išrinkimo lentelių bitus. Visiško perrinkimo testams sudaryti schema transformuojama. Kiekviena loginė ląstelė yra
papildoma skirstikliu. Konstantiniai gedimai įvedami tik skirstiklio duomenų įėjimuose. Toks būdas leidžia naudoti klasikinį ventilio
lygmens testų generatorių ir užtikrina visišką kiekvienos ląstelės perrinkimą. Pasiūlytas metodas buvo panaudotas ISCAS85 schemoms.
Atlikti eksperimentai parodė, kad visiško perrinkimo rinkiniai gerai tinka įvairioms tos pačios schemos realizacijoms. Il. 1, bibl. 10
(anglų kalba; santraukos lietuvių, anglų ir rusų k.).

E. Bareiša, V. Jusas, K. Motiejūnas, R. Šeinauskas. Testing of FPGA Logic Cells // Electronics and Electrical Engineering. -
Kaunas: Technologija, 2004. – No. 7(56). – P.37-42.

The manufacturing test procedure of RAM-based FPGAs uses several configurations and the exhaustive testing of all configurable
logic blocks (CLB). The transformation of the circuit is applied during a test pattern generation. A multiplexer is added to every logic
cell in such a way that it does not change a function of the circuit. The stuck-at faults are injected only on the data inputs of the
multiplexer. Such an approach allows to use a classical gate level test pattern generator and ensures an exhaustive testing of every logic
cell. The proposed approach was used to generate test sets for ISCAS85 benchmarks that were mapped into FPGA. We also conducted
fault simulation experiments that show exhaustive test patterns are effective in detecting faults of different implementations of the same
circuit. Ill.1, bibl. 10 (English, Abstracts in Lithuanian, English and Russian).

Э. Барейша, В. Юсас, К. Мотеюнас, Р. Шейнаускас. Тестирование логических блоков ПЛМ // Электроника и
электротехника. – Каунас: Технология, 2004. –№7(56). - С.37-42.

Тестирование ПЛМ можно разделять на две категории: тестирование после производства и тестирование после загрузки
конкретной функции. Тестирование после производства включает несколько конфигураций и подачу полного перебора
тестовых наборов. В статье предлагается использовать эту же методику и для тестирования конкретной функции ПЛМ. Для
того чтобы можно было использовать обычный генератор тестовых наборов для вентильного уровня каждый логический блок
дополняется мультиплексором. Эксперименты были проведены для цифровых схем ISCAS85. Ил. 1, библ. 12 (на английском
языке; рефераты на литовском, английском и русском яз.).

 43

