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Introduction

Hardware noise generators, for example [1,2], are
very useful and perspective for the cryptographic
applications. But nevertheless the application of hardware
noise generators has a very high implementation cost.

Classical pseudo-random number generators (PRNG)
are unsuitable for cryptographic applications despite the
goodness of their statistical characteristics. Among them
are linear feedback shift registers (LFSR) and linear
congruential random number generators [3]. However
quite small number of output samples causes a backward
and forward prediction property. This is valid even for
some well known generators based on non-linear dynamic
chaos systems. One of them well known example named as
logistic generator is a non-linear system described by the
equation [4]:

x,=ax,_(1-x,.;),0<x,, <1. 1)

The structure defined by the latter equation is quite
simple. The crypto analysis of this generator expressed by
the recurrence polynomial equation is presented in [3]. But
nevertheless the idea to use the non-linear chaotic dynamic
system for the cryptographic secure PRNG construction
seems to be perspective.

We can formulate two groups of requirements for
unpredictable cryptographic PRNG. The first one is
absence of backward and forward prediction and the
second one - resistance under the serious cryptographic
attacks.

The absence of backward prediction means that
having the arbitrary finite set of samples x;, x,,;...,x, it

is impossible to restore the previous samplesxy, Xj...,
X;_1. Analogously absence of forward prediction means
that having xg, xj..., x,_ it is impossible to predict the

following samples x;, The backward and

Xigloeos Xy -
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forward unpredictable generator we denominated as
unpredictable generator and hence as cryptographic secure

generator.
There are a lot of empty data intervals in the data
sequences transmitted over the telecommunication

channels. These intervals are coded with the same symbol.
So, if ciphering is performed by the PRNG, there are
additional opportunity for adversary to reveal a current
state of such generator and hence to perform its prediction.

As it can be seen and in more details explained later
the generator (1) is backward unpredictable even when
coefficient @ is known and is forward predictable
independent of a is known or a is unknown. This
property follows from the simplicity of the mathematical
structure of this generator (1). Thus for construction of
secure generator the additional complexity should be
added.

We present here some original construction of
cryptographic secure PRNG based on certain construction
of non-linear dynamic chaotic system.

The problem we have solved is the following: the
constructed generator has a complex structure and thus has
a backward and forward unpredictability property. We
denominated this generator as unpredictable.

The problem was solved by the certain connection of
several PRNG and non-linear dynamic chaotic system. The
cryptographic security of proposed generator is considered
in the sense of its unpredictability and is investigated
theoretically. By using some fundamental concepts and
under some assumptions it is proved that proposed PRNG
has a provable cryptographic security.

The theoretical background for the PRNG construction
In [5] the following theorem is proved.

Theorem 1. The pseudo-random bit generator exists
if and only if a one-way function (OWF) [6] exists.



We will construct below the secure generator by
proving the following implications. We define some
abstract generator and prove that if certain conditions hold
then the backward and forward prediction corresponds to
the inversion of some one-way functions (OWF). This
implication coincides with the statement of Theorem 1 and
hence guarantees the existence of secure generator.

Firstly we remind some OWF definitions.

A function F: X — Y is said to be an OWF if for all

x e X itis “easy” to compute the value F(x)=yeY but
it is “hard” to invert it. The term easy means that F'(x) can
be computed by polynomial-time algorithm (P-algorithm),
while F _l(y) algorithm belongs to the class of NP-
problems (algorithms). Recall that NP-problems are those
which require an exponential-time algorithms since the
polynomial time algorithms for theirs solution are
unknown.

The more rigorous OWF definition requires a
specialization of polynomial-time algorithms to the
deterministic polynomial-time and  probabilistic
polynomial-time.

Definition 1. A function F:X — Y is called an
OWEF if the following conditions hold.

1. There exists a deterministic polynomial-time
algorithm A, so that on input xe X the value
A(x)=F(x) can be computed.

2. For every probabilistic polynomial-time algorithm
A’ , every polynomial p and all sufficiently large N are

the probability satisfies the following inequality.

Prob[A'(F(x),N) e F~'F(x)] <1/ p(N), )

where N is some parameter defining the input data length.

This definition is very strong in the sense of
probability measure and is not adequate for our
considerations. For the cryptographic applications it is not
sufficient to find any element of F W (x) but rather the
certain single element of this set. Therefore we present a
weakened form of (2).

We can simplify the (2) by considering the problem of
exact backward and forward prediction property. Assume
Y =X and we would like to predict the exact values x

and x, by having the sample valuesx,, X, 1, ..., X;1pm>
where O0<t<t+m<n.

Then instead of (2) we propose to use the following
definitions

Prob, [ 4, (F'(x,)) = xo1< 1/ p(1) , 3)

Prob,[4, (F"(x,))=x,]1<1/ p(n), @)
where Prob, A], and Prob,, Azl are the probability and

algorithm of backward prediction and probability and
algorithm of forward prediction correspondingly.

Let us consider the non-linear dynamic chaos system
described by non-linear subjective function f in the form

xp = f(xp) - )
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Let function f providle a 2 to 1 mapping

f:X —> X, 1ie. for all images x; € X, f_l(xi) has two
different preimages x;;_; and x, ;| in X, where X, as

above, is some finite set of numbers.

Assume function f(x) on value x=x;, can be
calculated in polynomial time. Let the same is true to

calculate two preimages x;;_; and Xx;;; by
inverting f(x;). By definition, having the initial value
x=x,_, the calculation of x;, formally can be expressed
by the formula

x =" (x0). Q)

Proposition 1. The function f” is an OWF.
Proof. Due to f being a surjection form 2 to 1, the
probability to guess the actual value x,_; by having x, is

%. Hence the some probability to find the value x; is
t .
(1) ie.

Plr=x,| ()= x4 =( 1) ()

For every polynomial there exists some

p@)
sufficiently large ¢ that the following inequality holds

o
) <

Then we obtained a (3) inequality. The proof is
completed.

The proof of Proposition 1 allows us to use the
chaotic generator. Therefore we must solve the problem of
how to construct the forward unpredictable generator.

We propose to use several different generators with
the same domain and range set X and a procedure of it
random switching to produce the forward unpredictable
sequence. Then we must to decide of how to produce a
random switch function s(x) and to choose concrete

®)

generators to be switched.

By refereeing to the result [5] we can construct a
PRNG based on the function f with the properties
defined above.

Let the output of random switch function s(x) is
connected with the some non-linear dynamic random
number generator, which depends on the some parameter
S . Then the parameter # can be changed randomly. The

suitable candidate can be chosen of the form [7]:

X1 =+ B)A+1/B)P - x,(1-x,)P, ©)

where £ is integer in the range 1< <4, x, € X =[0,1].
The set X can be interpreted as a set of float numbers in
computer presentation. This equation is a generalization of
(1), since when £ =1 then we obtain (1).

Let the switching function is realized by some simple
PRNG, i.e. linear congruential generator [3]. Then for



example after the adequately chosen parameters a, b and

g the generator produces a sequence z;, t=0,l...
satisfying relation
z, =(az,_, +b)modg. (10)

In this case we need only to extract two bits from each
sample z, to produce the parameter § assignment in (9).

Linear congruential generator is repetitive, i. €. has a
period. This generator will have a maximum period if:
1. b and ¢ are relatively prime;

2. a—1 is divisible by all prime factors of ¢ ;
3. a—1 is a multiple of 4 if ¢ is a multiple of 4.

Linear congruential generator didn’t have good
correlation characteristics, but the samples, generated be
this generator, are uniform distributed.

The other solution could be a Blum-Blum-Schub
(BBS) generator [7] application to produce two
independent. But BBS generator operates more slowly.

Assumption 1. Let we have simple auxiliary
generator (AG) producing a series of two bits in each
sample of being statistical independent and uniformly
distributed.

Let the AG, satisfying the Assumption 1, assigns the
value S to the generator defined by (9) and thus performs

a switching procedure of four alternative generators.
Proposition 2. If the Assumption 1 holds, then the
forward recurrence function (9) is an OWF.
Proof. If Assumption 1 holds then the probability to

predict the sample x; ; by having x, from (9) is %.
Correspondingly, the probability to predict x;,, by having
X 18 ( %)” , taking into account (6). Then there exists a

polynomial time algorithm Azl , such that

Prob, [ 4, /" (x) = x.0,1=( Y4) (11)
where f and f” are defined by (9).

For the sufficiently large n for every polynomial
p(x) , we have the inequality

4 <

This proves the proposition.

So, by referencing to the Theorem 1 the Propositions
1 and 2 allows us to construct a pseudo random function
generators.

(12)

Unpredictable PRNG construction

The proposed PRNG construction consists of two
main parts:

1. The auxiliary generator (AG).

2. The non-linear dynamic chaos system (NLDCS).

The structure of the generator is presented in Fig.1.

The initiation of PRNG is performed by loading the

initial conditions to all generators by the switch S . A s
the backward shift operator.
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The AG yields the output # with two of digits. These

two bits defines a one concrete generator of four described
by (9).

As mentioned above linear congruential generators
have limited maximum period and this means that linear
congruential generator begins reiterate, when reaches the
maximum period with defined parameters. To have bigger
maximum period and to have better statistical
characteristics AG could be implemented by some way,
shown in Fig. 2.

B
\ 4
AG > NLDCS X1
s(x) Jp(x)
—/ Xy
Switch S
A

Fig. 1. The PRNG with provable cryptographic security

Two linear congruential generators in Fig. 2 generate
pseudo-random bit sequences. Each n bit sequence of the
generator is summarized by modulo 2 operations. The
concrete value of S consist of two bits. Then two bits are

transformed to decimal code. Since S must be integer in
the range 1< <4, the constant equal to 1 is added to the
decimal code of £ .

Generator 1 . Sum of )
» N bit Elements by
z=(az.r+b) mod g modulo 2
Bit Aritmetic
i B(x, to NLDCS
N;)a(gpl;lg ey to Integer —» addition of ﬁ(o—>)
> Y converter constant 1
Sum of
Generator 2
» N bit Elements by o
z=(az.r+b) mod ¢ modulo 2

Fig. 2. AG implementation

For the additional security of presented PRNG it is
required that the output sample x,,; of NLDCS should be

the uniformly distributed. The requirement of statistical
independence is not necessary since it is satisfied by the
AG.

Such decomposition of very important properties
essentially simplifies the entire PRNG construction and
provides great design flexibility.

The method of this problem solution and related
results will be presented in the further paper.
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BonpmmHCTBO TCEBHOCTyYalHBIX TE€HEPATOPOB YHCEN SBISIOTCS HEMOIXOSIIMMH JUIS KpUNTOrpaduy, HECMOTpS Ha HX
CTaTHCTHYECKHE M KOPPEALHOHHBIE OCOOCHHOCTH M3-3a MX INPSAMOIl M BO3BPATHOH IpenckasyeMocTH. [Ipenckasanue MoxeT OBITh
BBINIOJIHEHO, HAOMIONast (WM BOCCTAHABIMBAs) HEKOTOPBIC IOCIENOBATENBFHOCTH Ha BBIXOJE TeHepaTopoB. [l pemieHus 5TOi
npoOJIeMBl PEKOMEHIYETCSI UCIOJIb30BaTh HEMHEHHYI0 AMHAMHYECKYI0 XAaOTHYECKYI0 CHCTEMY M BCIIOMOTATeNbHBIH Te€HepaTop Co
CIIO)KHOW CTPYKTYpOH, Ha OCHOBE IICEBAOCIYYalHBIX TI'€HEpaTOpOB YHCE, TE€HEPHPYIOUMH HEOOXOMUMBIM M HEIHMHEHHOM
JMHAMUYECKOH XaOTHYECKOH CHUCTeMbl CEKpeTHbIH mapamerp f. B 3ToM ciydae mojydaercsi HEMpeacKa3yeMblid KpHIITOrpapuIecKuii
reHepaTop MCEBAOCIYYalHbIX YHMCEN, OCHOBAHHBIM HAa HENMHEHMHON AMHAMUYECKON XaOTHYECKOW CUCTEME ¢ HpPSAMOM M BO3BpaTHOM
HETIPEACKa3yeMOCThi0. B cTaTbe OIMMCaHBI TEOPETHUYECKHE OCHOBHI M BO3MOXKHAS KOHCTPYKIS JUIS Pa3pabOTKH KPHNTOTpadHIECKH
0e301MacHOro TeHepaTopa MCEeBAOCTyYalHbIX yrcen. Min. 2, 6ubn. 7 (Ha aHTIHIICKOM S3bIKE; pedeparbl Ha aHTIIMHCKOM, PYCCKOM H
JINTOBCKOM $3.).

A. Citavitius, A. Jonavitius, S. Japertas. Nenuspéjamas kriptografinis pseudoatsitiktiniy skaiiy generatorius netiesinés,
dinaminés, chaotinés sistemos pagrindu // Elektronika ir elektrotechnika. — Kaunas: Technologija, 2007. — Nr. 7(79). — P. 29-32.

B¢l galimo tiesioginio ir atgalinio sekos nariy numatymo dauguma pseudoatsitiktiniy skai¢iy generatoriy néra tinkami naudoti
kriptografijoje, nepaisant jy statistiniy ir koreliaciniy savybiy. Numatyti galima stebint (arba atkuriant) kai kurias generatoriaus i$éjime
gautas sekas. Problemai sprgsti Siame straipsnyje siiloma naudoti netiesing dinaming chaoting sistema ir sudétingos strukttiros
papildoma generatoriy pseudoatsitiktiniy skai¢iy generatoriy pagrindu, kuriuo naudojantis generuojamas netiesinei dinaminei chaotinei
sistemai reikalingas slaptas parametras f. Taip gautas generatorius generuoja seka, kurios biisimy ar prie§ tai buvusiy sekos nariy
nejmanoma numatyti i§ jau zinomy sekos nariy. Straipsnyje apraSomi §io generatoriaus konstravimo teoriniai pagrindai, pasitilyta galima
jo schema. Il. 2, bibl. 7 (angly kalba; santraukos angly, rusy ir lietuviy k.).
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