ELECTRONICS AND ELECTRICAL ENGINEERING

ISSN 1392 - 1215

2007. No. 7(79)

ELEKTRONIKA IR ELEKTROTECHNIKA

AUTOMATION, ROBOTICS

T125

AUTOMATIZAVIMAS, ROBOTECHNIKA

Testing of Data Processing Software in Heat Metering Systems

V. Knyva, M. Knyva

Department of Electronics and Measurements Systems, Kaunas University of Technology,
Studentu str. 50, LT-51368, Kaunas, Lithuania, phone: +370 37 300535, e-mail: vytautas.knyva@ktu.lt

Introduction

Nowadays, measurement system parameters and
characteristics basically depend on microprocessors and
their software. Hence, verification of measurement systems
software (MSS) is very important. After adoption of the
Measurement Instruments Directive (MID), verification of
MSS will be necessary [1]. The MID started in the early
nineties, was approved in spring of 2004, and after
transition period it became fully functional in autumn of
2006. The MID introduces a “new approach” to the
measurement system software and its verification. Due to
MID birth, in 1997 WELMEC (Western European Legal
Metrology Cooperation) formed the work group
WELMEC-SOFTWARE. The main object of this group
was extended formulation of essential MDS requirements.

Some time later, PTB (Physikalich-Technische
Bundesanstalt) formed another work group MID-
SOFTWARE, which elaborated and concretized

WELMEC requirements. On the basis of MID and
documents published by these groups, three stages of MDS
verification were proposed in [2]. Testing procedure of
data processing software in heat metering systems is a part
of a software functionality investigation stage and it will be
analyzed in this paper.

Heat Metering System

For development of a modern metering system
modular architecture often is used, for example sensors of
heat conveying liquid, flow sensors are separated from a
measurement system control module (calculator). Block
scheme of such a system presented in Fig.1. The system
can be controlled using user or communication interfaces,
i.e. a user may carry out configuration of the system.
Control software periodically reads data from sensors and
addresses it to the data processing software. After
calculations, measurement results are written to the
memory of devices. A user can access instantaneous
measurement results and an archive of measurements
through a user interface. Besides, measurement results can
be sent to the central city’s workstation via a
communication interface.

11

Sensor 3 Sensor 4

h,
Sensor 2 |«—w
Control sofware
Data processing Indicator of
Sensor | [« software measurement data

Communication

interface User interface

Fig. 1. Block scheme of the measurement system

The simplest heat metering system is shown in
Fig. 2.

Loy
o

V1

Fig. 2. Closed heating system. Flow sensor in a flow line

Here, we have 3 sensors: sensor of feeding flow V1,
two temperature sensors in flow (®;) and return (®,) lines.
Quantity of the heat given up can be calculated:

0=["ks® dv, kWh (1)
where Q is quantity of the heat given up, A® =0, -0,
temperature difference between flow and return of the heat

exchange circuit. V' - volume of the liquid passed, k -
heat coefficient calculated using the following expression

1 Al
k(p,0,,0,)=———

2
v A® @

where Ah=h, —h, is the specific enthalpy difference

between the flow and return enthalpies, V - specific liquid
mass, p - pressure of the liquid.

For validation of measurement systems software, a
“black box” method can be used [3]. L.e. data processing
software can be validated simulating the signals of heat
meter external sensors [4]. In Fig. 3, block scheme of such
validation is presented.

According to the boundary value analysis, a testing
sequence generator builds a test sequence [5]. In parallel
with a mathematical model, which can be called reference
software, data processing software gets test data. The
maximum permissible error can be calculated when
evaluation of the results received from the model and data
processing software is completed [6].

If the calculated maximum permissible error is
satisfactory, measurement systems data processing
software can be treated as metrologically reliable.

Generator of test
cases

!

Known input data

[
v Y

Mathematical model

Measurement system

Y A

Reference results Measured results

\ \
v

Comparison of the
results

Fig. 3. Verification block scheme of data processing software
Development of Test Sequences

Any program can be considered as function
F(x;,x5,...,x,) with the results depending on input data.
Further, a standard case will be discussed. Function F has
two variables x;,x, with the following boundaries: a <x; <
b and ¢ <x, <d. The input space of function F is shown in
Fig. 4. Any point within the rectangle is legitimate input to
function F.

Heat metering data processing software operating by
the scheme presented in fig. 1 may serve as an example of
a data processing function with two variables. Here,
variables represent temperatures ®; and @, of flow and
return heat conveying liquid, whereas flow of heat
conveying liquid is a constant value.

Boundary value analysis focuses on the limits of
input variables to identify the test cases. It is logical that
errors in software tend to occur near the extreme values of
an input variable. So, each test sequence can be developed
from values — nominal (nom), minimal (min) or maximal
(max) and values near the bound (min+, max-) with an
assumption that failures only rarely are the result of the

12

simultaneous occurrence of two errors. Thus, the boundary
value test sequence is developed by holding one variable at
its nominal value and in pair selecting another variable
with an extreme value. It is proposed that variables of
min+ and max- have 5% higher or lower value of min or
max.

a b

Fig. 4. The input space of function F(x;,x3)

Temperature measurements flow and return liquids of
a heat metering system should be analyzed. In each case,
temperature can vary within 0+160°C limits. Nominal
values for flow liquid temperature are ®,=80°C, and for
return liquid temperature they are ©,=40°C [7]. The
boundary value analysis test case for function F of two
variables (temperatures) can be written as shown: (80,0);
(80,40); (80,152); (80,157); (3,40); (8,40); (152,40);
(160,40).

Boundary value analysis can be extended by “faulty”
values in test cases [8], i.e. max+ and min- values can be
introduced. Then a test sequence will be extended by
(168,40); (-8,80); (80, -8); (80, 164) values. Test cases
with “faulty” values can be used for verification of a
software protection algorithm against faults.

Boundary value analysis is based on a “single fault”
assumption, but in the real world usually much more than
one fault is observed. So, for full data processing software
verification the worst case testing method can be used.
Worst case test cases for the function of two variables is
shown in Fig. 5.

x2 ‘
| |
L] L] L] ‘.
d [— - e s g s e e s s —: —
.T. L] .‘f_:
|
| |
| |
?. L] .T.
|
TR _sis
°r o4e i i on_
I | X
a b #

Fig. 5. Worst case test cases for the function of two variables

Using this method 5" testing cases can be developed,
whereas boundary value analysis methods allows
developing only 4n+1 testing cases, here n — number of
variables. A test sequence developed using the worst case
method with two variables will look as follows: (160,0);
(152,0); (160,8); (152,8); (0,0); (8,0); (0,8); (8,8);
(160,160); (160,152); (152, 160); (152, 152); (0, 160); (0,
52); (8,160); (8,152).

Worst case test cases can be extended by adding “faulty”
values: (160, -8); (168,0); (168,168); (152,168); (168,152);
(0,168); (-8,168);(-8,-8); (8,-8).

Testing of Temperature Measurement Software

An experiment was made in order to verify
metrological reliability of temperature measurement
software. Verification was carried out in the following
order:

e Resistor bridges R1, R2 simulate temperature

Sensors;

e Heat measuring system measures 0, O, AG,

temperatures;

e Comparison between the calculated ©;, ®,, A® and

measured 0, ©,,,, A@,, temperatures was made.

R1
Mathematical l
model of - » Measurement
measurement system
system - T »
R2
G)l > ®2 > A® 3 ®1m’ ®2m’ AQH
Comparison | _
7| of the results |

Fig. 6. Experimental stand

Table 1. Experimental results with boundary value analysis

O I o B B v A
1 80 0 80 79.91 0 7991 | Y Y
2 80 8 72 79.92 | 7.59 7233 | N N
3 80 40 40 79.86 | 39.52 40.34 | N N
4 80 152 -72 79.9 15549 | -7559 | Y Y
5 80 157 -77 79.91 156.56 -76.65 | 'Y Y
6 3 40 -37 2.35 39.55 372 1Y Y
7 8 40 -32 7.76 39.49 3173 | Y Y
8 152 40 112 152.07 | 39.5 112.57 | N N
9 160 40 120 160.8 | 39.5 121.3 | N N
10 168 40 128 168.21 | 39.5 12871 | Y N
11 -8 80 -88 0 79.65 -79.65 | 'Y Y
12 80 -8 88 79.9 0 799 | Y Y
13 80 164 -84 79.97 163.6 -83.63 | Y Y

Results are presented in Table 1. Measurements 1-9
were made using boundary value analysis test cases.

13

Measurements 10-13 were made using “faulty” test cases.
Each time then heat measuring systems software receives a
“faulty” signal from temperature sensors, it must generate
a warning on fault.

Here, f,= Y shows that “faulty” data was sent to
measurement systems software, whereas f,= N
demonstrates that correct data was sent to measurement
systems software. f,,= Y shows that measurement systems
software detected “faulty” data, and f,,= N indicates that
software failed.

Experimental results illustrated that measurement
systems software detected negative difference between
temperatures. At 10 measurements, software detected no
faulty value of flow liquid temperature. For detailed
verification, the worst case testing case was used.
Experimental results are presented in Table 2. Here, only
the test cases where measurement systems software failed
are provided.

Table 2. Experimental results with worst case testing

] On [6 [AO] O, [O | 46,
°C °C [°c|] c | °Cc | °C

1 160 160 159.9 0 159.9
2 152 0| 152 151.93 0 151.93
8 0 8 7.47 0 7.47

17 168 -8 | 176 167.9 0 167.9
18 160 -8 | 168 159.9 0 159.9
19 152 -8 | 160 151.9 0 151.9
21 168 160 8 167.9 | 159.8 8.1
27 160 -8 | 168 159.7 0 159.7
28 168 0] 168 167.8 0 167.8
31 168 152 16 167.8 | 151.7 16.1
35 8 -8 16 7.61 0 7.61

As it was expected, heat metering systems software
detected fault only at negative temperature differences and
minimal temperature values. But it failed with exceeded
temperature values and minimal or even negative return
liquid temperature values. Such performances of
measurement systems software contradict with the
essential measurement systems requirements presented in
the measurement instruments directive. Besides, it can be
stated that measurement results obtained with the
measurement system using such software can be falsified
or incorrect, i.e. metrologically unreliable.

Conclusions

1. Testing methodology for heat metering systems software
was developed. An experimental stand and mathematical
model were built.

2. Metrological reliability of temperature metering
software in heat metering systems was estimated. It has
been designated that measurement systems software
detects faults only at negative temperature differences and
near the minimum temperature bound. But software failed
when simulated temperatures reached or exceeded the
upper bound of permissible temperature.

3. Temperature measurement software failed at negative
and minimum temperatures of return liquid. Such

performances of measurement systems software contradict Devices // WSEAS Transaction on Systems. — Athens:
with the essential measurement systems requirements WSEAS Press, 2006. - Vol. 5, No. 10. — P. 2450-2455.
presented in the measurement instruments directive. 5. Cox M. G., Harris P. M. Design and use of reference data
Besides. it can be stated that measurement results obtained sets for testing scientific software // Analytica Chimica Acta.
with the measurement system using such software can be ~.1999. - Vol. 380, No. 2. — P. 339-351.

falsified or i i1 trologicall liabl 6. Citavitius A., Knyva V., Knyva M. Problems of Heat
alsilied or incorrect, 1.e. metrologically unreliable. Meters Software Verification / WSEAS Transactions on

Systems. — Athens: WSEAS Press, 2007. — Vol. 6, No. 5. —

References P. 1004-1008.
7. Citavitius A., Knyva V., Knyva M. Investigation of Heat
1. Directive 2004/22/ec of the European Parliament and of the Meters Software Functionality // Digest of Conference on
Council of 31 March 2004 on Measuring Instruments // precision electromagnetic measurements (CPEM 2006),
Official Journal of the European Union. — 2004. Accessed at: Torino, Italy. — 2006. — P. 418-420.
WWW.europa.eu.int. 8. Pomeranz I, Redy S. Worst-Case and Average-Case
2. Software Requirements on the Basis of the Measuring Analysis of Test Sets. Proceedings of Design / Automation
Instruments Directive / WELMEC guide 7.1. — 1999. and Test in Europe Conference. —2005. — P. 115-119.
Accessed at: www.welmec.org.
3. Jorgensen P. C. Software Testing. — CRC Press. — 2002. — Submitted for publication 2007 04 06
315 p.

4. Citavitius A., Knyva V., Knyva M. Verification of User
Interface of Supply to the Customer by Mains Measuring

V. Knyva, M. Knyva. Testing of Data Processing Software in Heat Metering Systems // Electronics and Electrical Engineering. —
Kaunas: Technologija, 2007. — No. 7(79). — P. 11-14.

Nowadays measurement system parameters and characteristics basically depend on microprocessors and their software. Hence,
verification of measurement systems software (MSS) is very important. After adoption of the Measurement Instruments Directive
(MID), verification of MSS will be necessary. For investigation of heat metering systems metrological reliability testing methodology
was created. Experimental stand and mathematical model were build. Experimental testing results of temperature measurement software
are presented. I11. 6, bibl. 8 (in English; summaries in English, Russian and Lithuanian).

B. KnuBa, M. KuuBa. TecrupoBanue nporpaMMHOro odecnedyeHusi o0padoTKH [JaHHBIX B CHCTeMe HM3MePEeHHs TeIlI0BOii
3Hepruu // JIeKTPOHUKA M Jj1eKTpoTexHuka. — Kaynac: Texnonorus, 2007. — Ne 7(79). — C. 11-14.

BonpmmHCTBO (hyHKIMIT B COBPEMEHHBIX CHCTEMAaX M3MEPEHUsI TEIIOBOM HEPTUH PEealn30BaHHBI IPOrPaMMHBIM IyTeM. [Tostomy
oco0oe BHIMAaHHE HEOOXOMMMO BBIAETATh HAAEKHOCTH NPOTpaMMHOro obecredeHus. Taxoke HEOOXOJMMO OTMETHTh, YTO CHCTEMa
M3MEpeHHs TeIUIOBOH SHEPTHH SBISIETCS 00BEKTOM NPAaBOBON METPOJOTHH, MOBEPKA MPOTPAaMMHOTO 00eCHedeHHsT KOTOPOTO JOJDKHA
MIPOBOJUTCST B 00s3aTeNbHOM mopsake 1o aupektuse EC 00 m3MepurensHbIX mpubopax. i omeHKH HaIeXHOCTH IPOTPaMMHOTO
obecriedeHNss CUCTEM M3MEPEHHs TEIIOBOI SHEpPrHH IpeUIo’KeHa METOAMKa TeCTHPOBaHMS MPOrpaMMHOro obecredeHus oOpaboTKu
JAHHBIX U3MepeHus. [IpMMeHeH NpUHLOUII TOBEpKH METOAOM ‘“‘depHoro smuka“. Ilpemnoxen anroputM QopmupoBaHus
MOCJIeIOBATENBHOCTEH TecTupoBaHus. [IpencTaBieHsl pe3ysbTaThl TECTUPOBAHUS IIPOrpaMMBI M3MepeHus Temnepatyp. Wi. 6, 6ubmn. 8
(Ha aHIIIMICKOM $3bIKe; pedepaThl Ha aHITIMHCKOM, PYCCKOM U JIUTOBCKOM $13.).

V. Knyva, M. Knyva. Silumos matavimo sistemy duomeny apdorojimo programinés jrangos testavimas // Elektronika ir
elektrotechnika. — Kaunas: Technologija, 2007. — Nr. 7(79). — P. 11-14.

Dauguma Siuolaikiniy $ilumos matavimo sistemy funkcijy paprastai atlickamos programiniu biidu. Todél vis svarbiau yra uztikrinti
programinés jrangos patikimuma. Be to, Silumos matavimo sistema yra teisinés metrologijos objektas, kuriam programinés irangos
patikra yra privaloma pagal ES Matavimo prietaisy direktyva. Siekiant jvertinti Silumos matavimo sistemy programinés jrangos
patikimuma, pasiiilyta duomeny apdorojimo programings jrangos testavimo metodika. Pasirinktas ,,juodosios dézés* tikrinimo principas.
Pasitilytas testavimo seky sudarymo algoritmas. Pateikti temperatiiros matavimo programinés irangos testavimo rezultatai. I1. 6, bibl. 8
(angly kalba; santraukos angly, rusy ir lietuviy k.)

14

