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Introduction 
 

To design and project control systems, especially if 
they are big or huge, nonlinear or stochastic, we need spe-
cial software, which could simplify these processes, make 
them more comprehended and could accelerate the work. 
These types of system are often used, so design tools and 
software becomes more important. To project large or huge 
systems it is better to use intellectual methods, which are 
able to gather data, to distribute data during system work 
and could learn. Such modelling methods or ways are mul-
ti-agent systems and artificial neural networks [2, 4, 9].  

Multi-agent systems are problem oriented, communi-
cative, flexible and autonomous. It means that agents, act-
ing in the system communicates between each other, they 
are flexible and they are not dependent from each other [2, 
3].  

Artificial neural network is understood as huge 
nonlinear system, decomposited from many simple nonlin-
ear archive elements, named neurons. Artificial neural 
network distinguish adaptive control, optimization, pattern 
classification, pattern or signal filtration, pattern filling [4, 
9]. 

These both systems are used for other system trai-
ning, but it can‘t be efectivelly used in control systems. 

Authors of the work suggest the use of coloured Petri 
nets, which can be used to design competitive process for 
learning control systems modelling. Traditionally talking 
about Petri nets, two points are accented – possibility to 
find and solve competition and investigate such Petri net  
characteristics as safeness, boundness, conservation, live-
ness, reach ability, coverability and etc. Besides, ability to 
model parallel processes and detect their competition are 
most important in most cases. There are many works, de-
scribed how to use Petri nets to model control systems, but 
there are no all-around tools. So more and more often we 
find tasks, systems, in which Petri nets are not enough well 
known, which can’t be used for training, because there are 
no possibilities to remember solution ways. If the control 

system is very complex, it is better to simplify their mod-
els. Authors of the work suggest to use global variables, 
which simplify the structures of models and give new pat-
terning possibilities in coloured Petri nets, which are aimed 
to model control systems and most important – it enables 
to use global variables for training of control systems [6, 
8].  

The comparable analysis, oriented to training prob-
lems is done for determining why coloured Petri networks 
with global variables is better than multi-agent systems and 
neural networks. 
 
Multi-agent systems 
 

Multi-agents can be used for modelling of learning 
systems. Often agent is described like computer program, 
acting in a narrow specific environment, which forms 
agent output actions using stored information, data, so that 
wanted goals could be reached [2].  

Term agent is tight-knit associated with such attrib-
utes: 

• Problem oriented – agents’ actions are pointed to 
solve narrow tasks. 

• Communicability – agents must have real time con-
nection with environment, by using sensors and ac-
tuators. At this point agents are different from clas-
sic systems, because most of them work in „off-
line” mode. 

• Flexibility – agents are dependent on present situa-
tion. Agent must pick best solution form many pos-
sibilities for problem solving and implement these 
solutions in time-varying dynamic environment. 

• Automomility – agent must behave without direct 
human or other agent intervention. Agent must con-
trol his actions and internal state [2]. 

 
For difficult problems solving some agents could be 

joined together and form multi-agent system (Muli-Agent 
Systems, MAS). Main characteristics of these systems are: 
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• System is compiled form several agents, each of 
them controls only one or several items of informa-
tion about object portions, 

• There is no global control system, 
• Information about system state is decentralized, cal-

culating is executed asynchronously [2, 3]. 
 

 
 
Fig. 1. Internal structure model of control agent 
 

The Control Behaviour Module, Local Control Plan-
ner and Global Control Coordinator can make decisions 
within a partial hierarchical structure using their respective 
knowledge base views. The Control Behaviour Module 
responds to external inputs in a reactive manner to satisfy 
hard real-time control constrains and avoid explicit re-
planning. The Local Control Planner can devise plans and 
schedules for specific local goals, and attempts to realize 
soft real-time activities appropriate to the current con-
trolled environment. When a situation exceeds the prob-
lem-solving capabilities of the Local Control Planner, con-
trol is shifted to the Global Control Coordinator. The 
Global Control Coordinator specifies long-term plans for 
agent behaviour when negotiating with other agents with 
respect to global control goals. 

An agent learning is done through separate agent 
communication with other agents and their cooperation. 
Agents in the system exchange fixed information with each 
other and by that way themselves control their state. If one 
agent from a system done his own work, others agents in 
the system gets information, that the specific work is al-
ready done. Such agent communication and learning is 
very practical in manufacturing process, where moving 
robots are involved. In that way, each robot gets informa-
tion about other robots movement directions and their co-
ordinates. So attendant robots do not have to contact with 
each other, because they will exactly know where each of 
them are. In the further system work, if any former situa-
tion will repeat, robots will beforehand know what exactly 
to do. By these attributes, multi-agent system has main 
learning system elements.  

There are several methods for projecting multi-agent 
systems. Best known of them is Gaia methodology.  

Wooldridge, Jennings and Kinny conceived the Gaia 
method on basis of its experiences of many years of their 
work. Gaia is based on the abstraction of an agent system 
as organization a tree model, consisting of different inter-
acting roles. System is divided in two parts: analysis and reali-

zation phases. During the analysis process, first, the individ-
ual roles in the system are identified and the interactions 
between the seen roles are specified. The description of a 
role contains the task of the role, its rights, activities and 
used minutes. In the specification of the task of a role, be-
come the possible sequences and connections of all ac-
tivities, as well as safety requirements, which must be 
kept. Activities are internal operational sequence of a 
role. Minutes are interaction mechanisms, with which 
dependence and relations between different roles are de-
scribed. In the design phase, roles are combined into agent 
types. Further, we determinable possible communication 
paths between agent types and all services, which de-
pend on each role of a type of agent specified. As result - 
a system project is presented, which is not enough how-
ever for an implementation and still must be further re-
fined by other methods. During realization phase, agent 
and organization models are organized. Gaia is easily un-
derstandable and therefore is suitable for those who start 
up into the agent-oriented software development. A re-
striction from Gaia is that the relations between agent types 
are fixed and cannot change dynamically.  

A multi-agent system has defects too. They are: 
 
• While reading literature it is recondite, why for 

problem solving it is necessary to use multi-agent 
systems, 

• by using multi-agent systems projectors attempt to 
reach general problem solutions, which could be 
used for all cases, 

• Multi-agent systems are not standardized, so it is 
difficult to analyze and compare systems between 
each other [3]. 

 
Artificial neural networks 
 

Artificial neural network is understood as huge 
nonlinear system, decomposited from many simple nonlin-
ear archive elements, named neurons.  

Main functions of artificial neural networks are: 
• Modelling and calculating 
• Adaptive control 
• Optimization 
• Pattern classification 
• Pattern or signal filtration  
• Pattern filling.  

 
Modelling and calculating: Entrance and exit data of 

the system is used for autonomous and adaptive training, 
which is the way how neural nets models are receivable. 
So predictive or calculated system exit (or mode) could be 
made-up from well trained or adaptive neural network. In 
neural network technology, this function is used for pat-
terns marking, approximations of the functions and in the 
associative memory [4, 9].  

Adaptive control: Neural network could be use as a 
adaptive controller. Given that inaccurate environment of 
the system, good adaptive control productivity could be 
reached (mostly for nonlinear systems with unknown 
mathematical model). 



 43

Optimization: dynamical (with recursive reaction) 
neural nets can present almost optional problem solution. 
Pattern classification: well trained neural network could be 
used for identifying typical class from given packs patterns 
in the system entrance. This function is used during data 
pressure, feature exclusions, signal coding and other. 

Pattern or signal classification: When in neural net-
work entrances signals with noise are present (or distorted 
patterns), signals or patterns without noise or with lesser 
distortions could be obtained. This function is analogical to 
mathematical filtering models. 

Pattern filling: Neural network can create complete 
pattern although incomplete pattern is given in the en-
trance. 

Classic artificial neural network consists from en-
trance buffer, inside (hidden) layers and exit buffer. 

 

 
 
Fig. 2. Classic structure of neural network 
 

Entrance buffer is buffer, which gives data for net-
work. This entrance layer is not neural calculating layer, 
because nodes don‘t have weights and activating functions. 
Upper exit layer pictures response to given entrances. In-
side layer is named hidden layer, because it doesn‘t have 
direct link to outside. These layers are typically named i-
layer, j-layer and k-layer.  

If you use suitable number of nodes in each hidden 
layer, using neural networks you could approximate very 
complex nonlinear dependences. Neural networks don‘t 
have strictly fixed functional form and for example number 
of neurons in hidden layer, during modelling process is 
often alternate. During modelling, particular temporary 
neural network structure is selected and network weight 
coefficients are identified during network training process. 
Network structure could be changed, depending on model-
ling results. Often received model is better than polynomial 
or harmonium functions models if you choose suitable 
neural network structure [9].  

An artificial neural network, in article author’s oppin-
ion, is not recommended to use for training manufacture 
line. Solution is motivated by fact, that when neural net-
work is training, some conflict situations could arise, 
which is not acceptable during manufacture process. 

 

Learning coloured Petri nets 
 
Coloured Petri nets (CPN) – it is expanded Petri nets 

(PN), in which tokens are differentiated by colours, transi-
tions and a connection identifies their migration in the net 
during modification.  

The notation of coloured PN is much concise than 
classical nets. Many relapses could be evaded, which are 
inherent to classic PN.  

SML (Standard Meta Language) is used as base for 
description and calculating. It is modified and stored for 
effectively work. Control systems are real objects, which 
exist near us and functional in the same time and space. So 
time is one of the main accents in this software, which 
solves functionality of the net. This enables us to project 
control systems in the same real categories, like-for-like it 
makes all conditions for creation control programs in vari-
ous control systems [1, 8]. 

Centaurus Coloured is specialized software. You can 
model systems, which have algorithmic part, which is de-
scribed using elements of CPN and analogical part, which 
is described by structural scheme using this software. 

There are three elements of PN – position, transition 
and chord, and new element, named “process” in this soft-
ware. Large industrial systems could be modelled using 
such model structure. 

One of the ways of using modelling results is creation 
of control program or its algorithm, or even automatic gen-
eration for purpose to install to real control system. The 
question is, why can‘t we install already trained control 
program to machine? There were no such possibilities in 
CPN, because there only systems existed with control pro-
gram pended. During development of control program, 
system can function due to provided algorithm. The train-
ing becomes very effective, if some choices in system 
work are possible. In usual systems, choice is made by 
projector, a priori choosing proper, but not always optimal 
version. It is proved, that if you have complicated system 
and asynchronous processes in here, the effectivity of sys-
tem work rises if control algorithms, accepting imple-
mented solutions, not only due to present task, but appreci-
ating next task, are used [10]. In such control system, usual 
PN, that problem can’t be solved, so the global variables 
are used in Centaurus coloured software. The definite rules 
are established for applying global variables in CPN, so it 
couldn‘t awake any ambiguities in modeling system. 

For usage of global variables in CPN, the following 
rules are proposed: 

1. global variables can not be used in constructors; 
2. new values may be assigned to global variables 

only through finish expressions; 
3. global variables can obtain new values only at the 

end a simulation step; 
Each step of simulation of a PN with global variables 

consists of stages: 
 
1. verification of conditions of firing of all transi-

tions; 
2. evaluation of expressions of output chords if fired 

transitions and placement of calculated multi-sets 
into output places; 
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3. calculation and assignment of new values to 
global variables. 

Values of global variables do not change along a 
simulation step, but could be changed just before start of 
another one. 

Global variables enable to remember modeling condi-
tions, so you can choose the best solution from several 
variants, that means that you can create all possibilities for 
system training. 

The other way for using model results for training 
system is the current system perfection in projection phase.  
As example let‘s analyze machine room with serving ro-
bots. Depots are needed for planchets and already made 
components. While the system is not large (one robot and 
few machines), robot actions could be programmed by a 
human. This means that all possible combinations are in-
spected manually; little usable depots are not used, robot 
and machines work is distributed that the downtime would 
be as possibly less. This type of manual modeling is very 
complex or impossible, requires a lot of time and re-
sources, if the number of machines, details and planchets is 
rising up. The rational way is to create training system [5, 
6, 7]. 

There are two possible training ways: 1. when train-
ing of the system is done during manufacture process, 2. 
when the training process is done in the software, and then, 
trained program is loaded into real system. 

In the first way, during manufacture process, ma-
chines and robots must react to emerging difficulties; learn 
how to avoid robots confrontation by themselves. If any 
problem with machines or robots arises, all manufacturing 
process falls into disarray. While the system coordinates all 
actions of devices, new problems could be evoked. System  

work is perturbed if one of machine is damaged and it is 
exported for fixing. At this case, some free space is left in 
the room. Then robots must recalculate coordinates of ma-
chine places and eliminate exported machines. As we see, 
that way of system training is not rational, baffling manu-
facture and even menaces hardware. 

In the second way, system is trained according to 
model, while manufacture cycle is imitable. The whole 
control model is generated by Centaurus Coloured soft-
ware. The training system must function like that: all pos-
sible variants of situation must be checked, fixing best 
variants. At this time problem emerges: how and where the 
best training results should be kept. So there must be 
global variables, which could be accessed any time in a 
model. During modeling, training process is realized dur-
ing imitation of a given system work model. This means, 
that in Centaurus Coloured software, system work process 
is simulated, received results are fixed in model database. 
When it is done, due to machines load and usage of robots, 
the best solution of system work is chosen according to 
these requirements. Such training schedule could be used 
doubly: in project phase, when you need to pick proper 
machines positions and functional phase, when the trained 
system model must be written into PLC’s. 

Let’s illustrate it with example. Suppose we have 
three machines system, which is served by one robot.   
Robot brings three kinds of planchets and picks production 
from them. Each planchet and component is transported to    
different depot. So we have three depots for planchets and 
components on each side of the manufacturing line. Such 
system model, modeled in Centaurus Coloured software, is 
given in Fig. 3. 

 
 

 
 

Fig. 3. Three machines system, which is served by robot, with three products and planchets depots 
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Fig. 4. Reoriented depots-manipulator line model in Centaurus Coloured software, when training results are evaluated 
 

While looking to given model in Fig. 3, question 
arises: is every depot used effectively and does the system 
work without outage and is not overloaded? If you want to 
answer this question, you should calculate how many com-
ponents and planchets are transported to every depot. 
While calculating robot movement, we consider that when 
robot goes to depot to pick up planchet, it could carry pro-
duced component to depot too.  

When all possible variants are investigated, conclu-
sion is made that in the right side of the scheme only three 
depots are used, and in the left side – only four from six. It 
is given in Fig. 4.  

Training process is very similar to optimization proc-
ess in other systems. The situation is generated during op-
timization process, their optimized parameters are changed 
and criterion value is determined again. If the value of cri-
terion mutate in desirable direction, further mutation in the 
same direction is beeing done. The essence is that the sys-
tem is simulating again and again, until desirable results 
are reached. At this point, training process becomes like 
that: first situation is generated and it is trying to find op-
tional solution from many possible solutions, situation pa-
rameters are verified and concrete results are written into 
database. Later, the next situation is generated, all possible 
fulfilments of current situation are checked and the best 
result is fixed and so on, while all possible situations are 
checked. Exactly here, global variables are needed in Petri 
nets. So then results could be accumulated in model and it 
could be reached any time, from any place during design 
process. 

The creation of global variables in Centaurus Col-
oured software and its usage for training process is the first 
step for adaptation to use it for designing of training sys-
tems. 
 
Conclusions 
 

1. Multi-agent systems are suitable for solving learn-
ing problems and they can be effectively used for learning 
during manufacture process. 

2. In neural networks while training them, some con-
flict situations could be originated. It could upstart for 

probabilistic solution logic, which can evoke unfavourable 
results during manufacturing process.   

3. The rational way to solve training problem is to use 
CPN. Global variables are needed if you want to imple-
ment this solution. System training is done in „off-line” 
mode. 
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Control systems become increasingly more complex, and sometimes the sequence of technological process so frequently changes, 
that the creation of the programs of control becomes problematic. One of the ways is to use learning systems. For purposes of learning 
the principles of multi-agent systems or the methods of artificial neural nets are used. The principles of multi-agent systems are most 
acceptable in the real devices, but the process of learning creates failures and damages the technological process. Artificial neural nets 
solve the same problem by probabilistic methods, so that during the learning the same problems appear. For purposes of learning col-
oured Petri nets are well suited if we use the global variables in them, which create the possibility to form, accumulate and preserve data 
of instruction. The model of system in the coloured Petri nets consists of two large parts; these are the model of the program of control 
and the model of technological process. The learning of system is conducted on the model and the already trained program of control is 
transferred to the control device. Ill. 4, bibl. 10 (in English; summaries in English, Russian and Lithuanian). 
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Электроника и электротехника. – Каунас: Технология, 2006. – № 4(68). – C. 41–46. 

Системы управления становятся все сложнее, а иногда последовательность технологического процесса так часто меняется, 
что становится проблемным создание программ управления. Один из путей – это применение для таких целей обучающиеся 
системы. Для целей обучения используются принципы мултиагентных систем или методы искусственных неуросетей. Прин-
ципы мултиагентных систем наиболее приемлемы в реальных устройствах, но процесс обучения создает сбои и повреждения 
технологического процесса. Искусственные неуросети ту же проблему решают вероятностными методами, так что во время 
обучения возникают те же проблемы. Для целей обучения хорошо подходят цветные Петри сети, если в них использовать гло-
бальные переменные, которые создают возможность формировать, накапливать и сохранять данные обучения. Модель систе-
мы в цветных Петри сетях, состоит из двух крупных частей, это модель программы управления и модель технологического 
процесса. Обучение системы проводится на модели, а уже обученная программа управления переносится на управляющее уст-
ройство. Ил. 4, библ.10 (на английском языке; рефераты на английском, русском и  литовском яз.). 
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Valdymo sistemos, kurios tampa vis sudėtingesnės ar kuriose kartkarčiais reikia keisti technologinio proceso eigą, kelia problemų 
sudarant valdymo programas. Vienas iš būdų šiai problemai spręsti yra apsimokančių sistemų taikymas. Savimokos tikslams taikomi 
daugiaagentės sistemos principai ir dirbtinių neuroninių tinklų metodai, tačiau yra nemaža neišspęstų problemų, trukdančių taikyti juos 
gamybinėms valdymo sistemoms mokyti. Daugiaagentės sistemos principai geriau tinka realiems įrenginiams, tačiau tokios sistemos 
savimoka susijusi su gamybos technologijos trikdžiais ir pažeidimais mokymo metu. Dirbtiniai neuroniniai tinklai tą pačią problemą 
sprendžia tikimybiniais principais, dėl to mokymo metu gali kilti tų pačių problemų. Valdymo sistemoms mokyti labai gerai tinka spal-
voti Petri tinklai, jei juose naudojami globalūs kintamieji, kurie leidžia formuoti, kaupti ir išsaugoti apmokymo duomenis. Sistemos 
modelis spalvotuose Petri tinkluose susideda iš dviejų stambių dalių –valdymo programos modelio ir technologinio proceso modelio. 
Sistema apmokoma modelyje, po to jau išmokyta valdymo programa įvedama į valdymo įtaisą. Il. 4, bibl. 10 (anglų kalba, santraukos 
anglų, rusų ir lietuvių k.). 


