
 41

ELEKTRONICS AND ELECTRICAL ENGINEERING
ISSN 1392 – 1215 2006. Nr.4(68)

ELEKTRONIKA IR ELEKTROTECHNIKA

AUTOMATION, ROBOTICS
 T125

AUTOMATIZAVIMAS, ROBOTOTECHNIKA

Coloured Petri Nets – Tool for Control Systems Learning

V. Baranauskas, K. Šarkauskas
Department of Control Engineering, Kaunas University of Technology,
Studentų 48, LT-51367 Kaunas, Lithuania; tel. +370 37 300290; e-mail: virgisbar@yahoo.com,
S. Bartkevičius
Department of Theoretical Electric Engineering, Kaunas University of Technology,
Studentų 48, Lt-51367 Kaunas, Lithuania; tel. +370 37 300253; e-mail: Stanislovas.Bartkevicius@ktu.lt

Introduction

To design and project control systems, especially if
they are big or huge, nonlinear or stochastic, we need spe-
cial software, which could simplify these processes, make
them more comprehended and could accelerate the work.
These types of system are often used, so design tools and
software becomes more important. To project large or huge
systems it is better to use intellectual methods, which are
able to gather data, to distribute data during system work
and could learn. Such modelling methods or ways are mul-
ti-agent systems and artificial neural networks [2, 4, 9].

Multi-agent systems are problem oriented, communi-
cative, flexible and autonomous. It means that agents, act-
ing in the system communicates between each other, they
are flexible and they are not dependent from each other [2,
3].

Artificial neural network is understood as huge
nonlinear system, decomposited from many simple nonlin-
ear archive elements, named neurons. Artificial neural
network distinguish adaptive control, optimization, pattern
classification, pattern or signal filtration, pattern filling [4,
9].

These both systems are used for other system trai-
ning, but it can‘t be efectivelly used in control systems.

Authors of the work suggest the use of coloured Petri
nets, which can be used to design competitive process for
learning control systems modelling. Traditionally talking
about Petri nets, two points are accented – possibility to
find and solve competition and investigate such Petri net
characteristics as safeness, boundness, conservation, live-
ness, reach ability, coverability and etc. Besides, ability to
model parallel processes and detect their competition are
most important in most cases. There are many works, de-
scribed how to use Petri nets to model control systems, but
there are no all-around tools. So more and more often we
find tasks, systems, in which Petri nets are not enough well
known, which can’t be used for training, because there are
no possibilities to remember solution ways. If the control

system is very complex, it is better to simplify their mod-
els. Authors of the work suggest to use global variables,
which simplify the structures of models and give new pat-
terning possibilities in coloured Petri nets, which are aimed
to model control systems and most important – it enables
to use global variables for training of control systems [6,
8].

The comparable analysis, oriented to training prob-
lems is done for determining why coloured Petri networks
with global variables is better than multi-agent systems and
neural networks.

Multi-agent systems

Multi-agents can be used for modelling of learning
systems. Often agent is described like computer program,
acting in a narrow specific environment, which forms
agent output actions using stored information, data, so that
wanted goals could be reached [2].

Term agent is tight-knit associated with such attrib-
utes:

• Problem oriented – agents’ actions are pointed to
solve narrow tasks.

• Communicability – agents must have real time con-
nection with environment, by using sensors and ac-
tuators. At this point agents are different from clas-
sic systems, because most of them work in „off-
line” mode.

• Flexibility – agents are dependent on present situa-
tion. Agent must pick best solution form many pos-
sibilities for problem solving and implement these
solutions in time-varying dynamic environment.

• Automomility – agent must behave without direct
human or other agent intervention. Agent must con-
trol his actions and internal state [2].

For difficult problems solving some agents could be

joined together and form multi-agent system (Muli-Agent
Systems, MAS). Main characteristics of these systems are:

 42

• System is compiled form several agents, each of
them controls only one or several items of informa-
tion about object portions,

• There is no global control system,
• Information about system state is decentralized, cal-

culating is executed asynchronously [2, 3].

Fig. 1. Internal structure model of control agent

The Control Behaviour Module, Local Control Plan-
ner and Global Control Coordinator can make decisions
within a partial hierarchical structure using their respective
knowledge base views. The Control Behaviour Module
responds to external inputs in a reactive manner to satisfy
hard real-time control constrains and avoid explicit re-
planning. The Local Control Planner can devise plans and
schedules for specific local goals, and attempts to realize
soft real-time activities appropriate to the current con-
trolled environment. When a situation exceeds the prob-
lem-solving capabilities of the Local Control Planner, con-
trol is shifted to the Global Control Coordinator. The
Global Control Coordinator specifies long-term plans for
agent behaviour when negotiating with other agents with
respect to global control goals.

An agent learning is done through separate agent
communication with other agents and their cooperation.
Agents in the system exchange fixed information with each
other and by that way themselves control their state. If one
agent from a system done his own work, others agents in
the system gets information, that the specific work is al-
ready done. Such agent communication and learning is
very practical in manufacturing process, where moving
robots are involved. In that way, each robot gets informa-
tion about other robots movement directions and their co-
ordinates. So attendant robots do not have to contact with
each other, because they will exactly know where each of
them are. In the further system work, if any former situa-
tion will repeat, robots will beforehand know what exactly
to do. By these attributes, multi-agent system has main
learning system elements.

There are several methods for projecting multi-agent
systems. Best known of them is Gaia methodology.

Wooldridge, Jennings and Kinny conceived the Gaia
method on basis of its experiences of many years of their
work. Gaia is based on the abstraction of an agent system
as organization a tree model, consisting of different inter-
acting roles. System is divided in two parts: analysis and reali-

zation phases. During the analysis process, first, the individ-
ual roles in the system are identified and the interactions
between the seen roles are specified. The description of a
role contains the task of the role, its rights, activities and
used minutes. In the specification of the task of a role, be-
come the possible sequences and connections of all ac-
tivities, as well as safety requirements, which must be
kept. Activities are internal operational sequence of a
role. Minutes are interaction mechanisms, with which
dependence and relations between different roles are de-
scribed. In the design phase, roles are combined into agent
types. Further, we determinable possible communication
paths between agent types and all services, which de-
pend on each role of a type of agent specified. As result -
a system project is presented, which is not enough how-
ever for an implementation and still must be further re-
fined by other methods. During realization phase, agent
and organization models are organized. Gaia is easily un-
derstandable and therefore is suitable for those who start
up into the agent-oriented software development. A re-
striction from Gaia is that the relations between agent types
are fixed and cannot change dynamically.

A multi-agent system has defects too. They are:

• While reading literature it is recondite, why for

problem solving it is necessary to use multi-agent
systems,

• by using multi-agent systems projectors attempt to
reach general problem solutions, which could be
used for all cases,

• Multi-agent systems are not standardized, so it is
difficult to analyze and compare systems between
each other [3].

Artificial neural networks

Artificial neural network is understood as huge
nonlinear system, decomposited from many simple nonlin-
ear archive elements, named neurons.

Main functions of artificial neural networks are:
• Modelling and calculating
• Adaptive control
• Optimization
• Pattern classification
• Pattern or signal filtration
• Pattern filling.

Modelling and calculating: Entrance and exit data of

the system is used for autonomous and adaptive training,
which is the way how neural nets models are receivable.
So predictive or calculated system exit (or mode) could be
made-up from well trained or adaptive neural network. In
neural network technology, this function is used for pat-
terns marking, approximations of the functions and in the
associative memory [4, 9].

Adaptive control: Neural network could be use as a
adaptive controller. Given that inaccurate environment of
the system, good adaptive control productivity could be
reached (mostly for nonlinear systems with unknown
mathematical model).

 43

Optimization: dynamical (with recursive reaction)
neural nets can present almost optional problem solution.
Pattern classification: well trained neural network could be
used for identifying typical class from given packs patterns
in the system entrance. This function is used during data
pressure, feature exclusions, signal coding and other.

Pattern or signal classification: When in neural net-
work entrances signals with noise are present (or distorted
patterns), signals or patterns without noise or with lesser
distortions could be obtained. This function is analogical to
mathematical filtering models.

Pattern filling: Neural network can create complete
pattern although incomplete pattern is given in the en-
trance.

Classic artificial neural network consists from en-
trance buffer, inside (hidden) layers and exit buffer.

Fig. 2. Classic structure of neural network

Entrance buffer is buffer, which gives data for net-
work. This entrance layer is not neural calculating layer,
because nodes don‘t have weights and activating functions.
Upper exit layer pictures response to given entrances. In-
side layer is named hidden layer, because it doesn‘t have
direct link to outside. These layers are typically named i-
layer, j-layer and k-layer.

If you use suitable number of nodes in each hidden
layer, using neural networks you could approximate very
complex nonlinear dependences. Neural networks don‘t
have strictly fixed functional form and for example number
of neurons in hidden layer, during modelling process is
often alternate. During modelling, particular temporary
neural network structure is selected and network weight
coefficients are identified during network training process.
Network structure could be changed, depending on model-
ling results. Often received model is better than polynomial
or harmonium functions models if you choose suitable
neural network structure [9].

An artificial neural network, in article author’s oppin-
ion, is not recommended to use for training manufacture
line. Solution is motivated by fact, that when neural net-
work is training, some conflict situations could arise,
which is not acceptable during manufacture process.

Learning coloured Petri nets

Coloured Petri nets (CPN) – it is expanded Petri nets

(PN), in which tokens are differentiated by colours, transi-
tions and a connection identifies their migration in the net
during modification.

The notation of coloured PN is much concise than
classical nets. Many relapses could be evaded, which are
inherent to classic PN.

SML (Standard Meta Language) is used as base for
description and calculating. It is modified and stored for
effectively work. Control systems are real objects, which
exist near us and functional in the same time and space. So
time is one of the main accents in this software, which
solves functionality of the net. This enables us to project
control systems in the same real categories, like-for-like it
makes all conditions for creation control programs in vari-
ous control systems [1, 8].

Centaurus Coloured is specialized software. You can
model systems, which have algorithmic part, which is de-
scribed using elements of CPN and analogical part, which
is described by structural scheme using this software.

There are three elements of PN – position, transition
and chord, and new element, named “process” in this soft-
ware. Large industrial systems could be modelled using
such model structure.

One of the ways of using modelling results is creation
of control program or its algorithm, or even automatic gen-
eration for purpose to install to real control system. The
question is, why can‘t we install already trained control
program to machine? There were no such possibilities in
CPN, because there only systems existed with control pro-
gram pended. During development of control program,
system can function due to provided algorithm. The train-
ing becomes very effective, if some choices in system
work are possible. In usual systems, choice is made by
projector, a priori choosing proper, but not always optimal
version. It is proved, that if you have complicated system
and asynchronous processes in here, the effectivity of sys-
tem work rises if control algorithms, accepting imple-
mented solutions, not only due to present task, but appreci-
ating next task, are used [10]. In such control system, usual
PN, that problem can’t be solved, so the global variables
are used in Centaurus coloured software. The definite rules
are established for applying global variables in CPN, so it
couldn‘t awake any ambiguities in modeling system.

For usage of global variables in CPN, the following
rules are proposed:

1. global variables can not be used in constructors;
2. new values may be assigned to global variables

only through finish expressions;
3. global variables can obtain new values only at the

end a simulation step;
Each step of simulation of a PN with global variables

consists of stages:

1. verification of conditions of firing of all transi-

tions;
2. evaluation of expressions of output chords if fired

transitions and placement of calculated multi-sets
into output places;

 44

3. calculation and assignment of new values to
global variables.

Values of global variables do not change along a
simulation step, but could be changed just before start of
another one.

Global variables enable to remember modeling condi-
tions, so you can choose the best solution from several
variants, that means that you can create all possibilities for
system training.

The other way for using model results for training
system is the current system perfection in projection phase.
As example let‘s analyze machine room with serving ro-
bots. Depots are needed for planchets and already made
components. While the system is not large (one robot and
few machines), robot actions could be programmed by a
human. This means that all possible combinations are in-
spected manually; little usable depots are not used, robot
and machines work is distributed that the downtime would
be as possibly less. This type of manual modeling is very
complex or impossible, requires a lot of time and re-
sources, if the number of machines, details and planchets is
rising up. The rational way is to create training system [5,
6, 7].

There are two possible training ways: 1. when train-
ing of the system is done during manufacture process, 2.
when the training process is done in the software, and then,
trained program is loaded into real system.

In the first way, during manufacture process, ma-
chines and robots must react to emerging difficulties; learn
how to avoid robots confrontation by themselves. If any
problem with machines or robots arises, all manufacturing
process falls into disarray. While the system coordinates all
actions of devices, new problems could be evoked. System

work is perturbed if one of machine is damaged and it is
exported for fixing. At this case, some free space is left in
the room. Then robots must recalculate coordinates of ma-
chine places and eliminate exported machines. As we see,
that way of system training is not rational, baffling manu-
facture and even menaces hardware.

In the second way, system is trained according to
model, while manufacture cycle is imitable. The whole
control model is generated by Centaurus Coloured soft-
ware. The training system must function like that: all pos-
sible variants of situation must be checked, fixing best
variants. At this time problem emerges: how and where the
best training results should be kept. So there must be
global variables, which could be accessed any time in a
model. During modeling, training process is realized dur-
ing imitation of a given system work model. This means,
that in Centaurus Coloured software, system work process
is simulated, received results are fixed in model database.
When it is done, due to machines load and usage of robots,
the best solution of system work is chosen according to
these requirements. Such training schedule could be used
doubly: in project phase, when you need to pick proper
machines positions and functional phase, when the trained
system model must be written into PLC’s.

Let’s illustrate it with example. Suppose we have
three machines system, which is served by one robot.
Robot brings three kinds of planchets and picks production
from them. Each planchet and component is transported to
different depot. So we have three depots for planchets and
components on each side of the manufacturing line. Such
system model, modeled in Centaurus Coloured software, is
given in Fig. 3.

Fig. 3. Three machines system, which is served by robot, with three products and planchets depots

 45

Fig. 4. Reoriented depots-manipulator line model in Centaurus Coloured software, when training results are evaluated

While looking to given model in Fig. 3, question
arises: is every depot used effectively and does the system
work without outage and is not overloaded? If you want to
answer this question, you should calculate how many com-
ponents and planchets are transported to every depot.
While calculating robot movement, we consider that when
robot goes to depot to pick up planchet, it could carry pro-
duced component to depot too.

When all possible variants are investigated, conclu-
sion is made that in the right side of the scheme only three
depots are used, and in the left side – only four from six. It
is given in Fig. 4.

Training process is very similar to optimization proc-
ess in other systems. The situation is generated during op-
timization process, their optimized parameters are changed
and criterion value is determined again. If the value of cri-
terion mutate in desirable direction, further mutation in the
same direction is beeing done. The essence is that the sys-
tem is simulating again and again, until desirable results
are reached. At this point, training process becomes like
that: first situation is generated and it is trying to find op-
tional solution from many possible solutions, situation pa-
rameters are verified and concrete results are written into
database. Later, the next situation is generated, all possible
fulfilments of current situation are checked and the best
result is fixed and so on, while all possible situations are
checked. Exactly here, global variables are needed in Petri
nets. So then results could be accumulated in model and it
could be reached any time, from any place during design
process.

The creation of global variables in Centaurus Col-
oured software and its usage for training process is the first
step for adaptation to use it for designing of training sys-
tems.

Conclusions

1. Multi-agent systems are suitable for solving learn-
ing problems and they can be effectively used for learning
during manufacture process.

2. In neural networks while training them, some con-
flict situations could be originated. It could upstart for

probabilistic solution logic, which can evoke unfavourable
results during manufacturing process.

3. The rational way to solve training problem is to use
CPN. Global variables are needed if you want to imple-
ment this solution. System training is done in „off-line”
mode.

References

1. Bartkevičius S. K., Mačerauskas V., Šarkauskas K. Spal-

votųjų Petri tinklų taikymas valdymo sistemoms modeliuoti
// Elektronika ir elektrotechnika. – Kaunas: Technologija,
2003. – Nr. 4(16). – P. 7–11.

2. Baranauskas V. Multi-agentinės valdymo technologijos
taikymas automatizavimo sistemose: Magistro darbas. –
Kaunas, 2005.

3. Simutis R. Multiagentų metodikos taikymas procesų val-
dymo sistemose // Automatika ir valdymo technologijos:
tarptautinės konferencijos medžiaga. – 2002. – P. 12–18.

4. Simutis R., Levišauskas D., Stankevičius G. Procesų ir
sistemų modeliavimas. – Kaunas: Technologija, 1999. – P.
86–88.

5. Wermter S., Elshaw M. Learning robot actions based on
self-organising langue memory // Neural Networks.– Vol-
ume 16, Issues 5–6, June–July 2003. – P. 691–699.

6. Hirasawa K., Ohbayashi M., Sakai S., Hu J. Learning
Petri network and its application to nonlinear system control
// IEEE Transactions on systems, man and cybernetics. –
Part B: Cybernetics.– Vol. 28, No. 6, December 1998. – P.
781–789.

7. Provost J., Kuipers B. J., Miikkulainen R. Self-
organizing distinctive-state abstraction for learning robot
navigation // Artificial Intelligence Lab, The University of
Texas at Austin, 1 university Station C0500, Austin TX
78712 USA. July 2005. – P. 1–9.

8. Kragnys R., Bartkevičius S. Hibridinių valdymo sistemų
modeliavimo Petri tinklais ypatumai // Elektronika ir elekt-
rotechnika – Kaunas: Technologija, 2005. – Nr. 6(62). –
P.82–87.

9. Ripley B. D. Pattern recognition and neural networks. //
Textbook, Cambridge University, UK, ISBN 0 521 46086 7
1996. – P. 1–416

10. Bartkevičius S., Daunoras J., Šarkauskas K. Lanksčios
linijos valdymo optimizavimas // Elektronika ir elektrotech-
nika: Mokslo darbai. – Kaunas: Technologija, 2005. – Nr.
1(57). – P. 56–61.

Presented for publication 2006 03 01

 46

V. Baranauskas, S. Bartkevičius, K. Šarkauskas. Coloured Petri Nets – Tool for Control Systems Learning // Electronics and
Electrical Engineering. – Kaunas: Technologija, 2006. – No. 4(68). – P. 41–46.

Control systems become increasingly more complex, and sometimes the sequence of technological process so frequently changes,
that the creation of the programs of control becomes problematic. One of the ways is to use learning systems. For purposes of learning
the principles of multi-agent systems or the methods of artificial neural nets are used. The principles of multi-agent systems are most
acceptable in the real devices, but the process of learning creates failures and damages the technological process. Artificial neural nets
solve the same problem by probabilistic methods, so that during the learning the same problems appear. For purposes of learning col-
oured Petri nets are well suited if we use the global variables in them, which create the possibility to form, accumulate and preserve data
of instruction. The model of system in the coloured Petri nets consists of two large parts; these are the model of the program of control
and the model of technological process. The learning of system is conducted on the model and the already trained program of control is
transferred to the control device. Ill. 4, bibl. 10 (in English; summaries in English, Russian and Lithuanian).

В. Баранаускас, С. Барткевичюс, К. Шаркаускас. Цветные Петри сети – устройство для обучения систем управления //
Электроника и электротехника. – Каунас: Технология, 2006. – № 4(68). – C. 41–46.

Системы управления становятся все сложнее, а иногда последовательность технологического процесса так часто меняется,
что становится проблемным создание программ управления. Один из путей – это применение для таких целей обучающиеся
системы. Для целей обучения используются принципы мултиагентных систем или методы искусственных неуросетей. Прин-
ципы мултиагентных систем наиболее приемлемы в реальных устройствах, но процесс обучения создает сбои и повреждения
технологического процесса. Искусственные неуросети ту же проблему решают вероятностными методами, так что во время
обучения возникают те же проблемы. Для целей обучения хорошо подходят цветные Петри сети, если в них использовать гло-
бальные переменные, которые создают возможность формировать, накапливать и сохранять данные обучения. Модель систе-
мы в цветных Петри сетях, состоит из двух крупных частей, это модель программы управления и модель технологического
процесса. Обучение системы проводится на модели, а уже обученная программа управления переносится на управляющее уст-
ройство. Ил. 4, библ.10 (на английском языке; рефераты на английском, русском и литовском яз.).

V. Baranauskas, S. Bartkevičius, K. Šarkauskas. Spalvoti Petri tinklai – valdymo sistemų savimokos priemonė // Elektronika ir
elektrotechnika. – Kaunas: Technologija, 2006. – Nr. 4(68). – P. 41–46.

Valdymo sistemos, kurios tampa vis sudėtingesnės ar kuriose kartkarčiais reikia keisti technologinio proceso eigą, kelia problemų
sudarant valdymo programas. Vienas iš būdų šiai problemai spręsti yra apsimokančių sistemų taikymas. Savimokos tikslams taikomi
daugiaagentės sistemos principai ir dirbtinių neuroninių tinklų metodai, tačiau yra nemaža neišspęstų problemų, trukdančių taikyti juos
gamybinėms valdymo sistemoms mokyti. Daugiaagentės sistemos principai geriau tinka realiems įrenginiams, tačiau tokios sistemos
savimoka susijusi su gamybos technologijos trikdžiais ir pažeidimais mokymo metu. Dirbtiniai neuroniniai tinklai tą pačią problemą
sprendžia tikimybiniais principais, dėl to mokymo metu gali kilti tų pačių problemų. Valdymo sistemoms mokyti labai gerai tinka spal-
voti Petri tinklai, jei juose naudojami globalūs kintamieji, kurie leidžia formuoti, kaupti ir išsaugoti apmokymo duomenis. Sistemos
modelis spalvotuose Petri tinkluose susideda iš dviejų stambių dalių –valdymo programos modelio ir technologinio proceso modelio.
Sistema apmokoma modelyje, po to jau išmokyta valdymo programa įvedama į valdymo įtaisą. Il. 4, bibl. 10 (anglų kalba, santraukos
anglų, rusų ir lietuvių k.).

