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Introduction 

 
High-throughput experiments in Bioinformatics are 

characterised by huge amounts of data which need to be 
processed in order to extract as much meaningful 
information as possible. Typically, data is analysed for 
pattern recognition, classification, and network modelling. 
For instance, the complete genome of certain specimen is 
composed of big collections of nucleotides or amino acids 
sequences. These sequences have to be analysed in order to 
detect candidates to coding and/or regulating regions. 
Adding even more complexity to this scenario, gene 
products (proteins) interact in complex regulation networks 
of activators and repressors [1]. 

An excellent experimental source of analysis and 
detection of these potential protein pathways are 
microarrays [2]. In microarrays, levels of gene expression 
are automatically measured under different conditions, 
tissues, etc, resulting in a high dimension data array which 
has to be explored.  

Fuzzy logic has been shown to be a useful and 
reliable technique for characterising experimental data in 
microarrays, as well as in other areas of Bioinformatics [3]. 
In [4], a simple microarray problem was successfully 
addressed by using fuzzy logic, although the given 
example is not easily extensible to a more complex 
framework, due to the fact of what is called the curse of 
dimensionality: a combinatorial explosion, even for a small 
number of genes and experiments. In [5], this problem was 
avoided by using the so-called union rule configuration 
(URC) method [6]. This method is based on the 
assumption of additive separability of the fuzzy rule base 
[7], requirement which is verified in these authors by 
considering only some particular interrelations among 
genes. 

Based on these previous works, it is apparent the need 
for a more general methodology, who takes into account 
all the possible combinations among several genes, 
performs an exhaustive search, providing at the same time 
a computationally efficient algorithm for the computation 
of higher order interactions which avoids the curse of 
dimensionality. 

Methods 
 

Our study will be limited to a special type of fuzzy 
systems which will be called triangular fuzzy system, 
characterized by some internal symmetry and simple 
structure. Our objective will be to take advantage of these 
properties in order to make the system additively 
separable, and therefore, computational simple. 

Definition 1. A standard fuzzy system ),,( zμxΦ  
verifies the following properties: 

1. The input space has been pre-processed and 
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6. The output of the fuzzy rule-based system is 
calculated using the centre average defuzzification of the 
rule table : ijz

7. . (1) ∑ ∑ ∏
= = =

=
N

i

N

j k
kkiij xzxxz

0 0

2

1
21 )(),( μ

Proposition 1. A standard fuzzy system ),,( zμxΦ  
with triangular-shaped membership functions can be 
transformed into an additively separable standard fuzzy 
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system ),,ˆ( αωxΔ  by rotating the input variables by 45 
degrees, leading to the following defuzzification:  
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The intuitive idea is that by rotating the input 
variables by 45 degrees, a new reference system across the 
diagonals is established where the grid formed by the 
centres of the membership functions is disentangled. First, 
we give the input variables in the new coordinates: 
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Lemma 1. Given a point in the plane , the 
product of its coordinates equals half the difference 
between the squares of the second and first diagonal 
coordinates: 
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Therefore, the product of the two variables is 
transformed in an additively separable function of each 
new coordinate. This property will be very useful since, as 
we will see, every fuzzy output of a fuzzy triangular 
system can be decomposed into products of the input 
variables. 

In a triangular standard fuzzy system, each fuzzy 
membership function is defined as a linear function of the 
variable kikkikki bxax +=)(μ , . At a 
particular point , where  and 

, the output of equation (1) is reduced to: 
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If we rotate the plane by 45 degrees and walk across 
the diagonals, assuming that the membership functions are 
arranged symmetrically: 
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where )()()( 111122 xxx iiNj μμμ =−= − . 

This last expression, combined with the conditions 
given in Definition 1 of the triangular fuzzy system, allows 
the separation of variables along the diagonals, leading to 
the following scalar functions, where indexes i and j are 
kept for referring to and in order to improve 
readability: 

1x 2x
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In the new coordinates framework, the input space 

can be divided again into segments: 
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Expressions (10) and (11) represent the projection of 

surface along the new axis. In order to determine the 
structure of the sought additively separable fuzzy system, 
output equation 

)ˆ,ˆ(ˆ yxz

 (2) is particularized to the projection 
on the axis: 
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)0(

1̂xS  and  represent the value of the 
contribution of each variable to the output, at the origin of 
coordinates . At a particular point  
expressed in the new coordinates, where

)0(
2x̂S

)0,0(ẑ )ˆ,ˆ( 21 xx

1111 ˆˆˆ +≤≤ ii xxx  
and 1222 ˆˆˆ +≤≤ jj xxx , the output will be given by: 

 
  ++= ++ )ˆ()ˆ()ˆ,ˆ(ˆ 111

*
1111121 xxxxz iiii ωαωα

  (14) ).ˆ()ˆ( 212
*

12222 xx jjjj ++++ ωαωα

 
Taking into account property 4 of the system and 

expressions (12) and (13), a system of linear equations can 
be established corresponding to the reticule: 

 
 NiSxz xii K0)0()0,ˆ(ˆ

2ˆ11 =+= α , (15) 
 
 NjSxz jxj K0)0()ˆ,0(ˆ 2ˆ2 1

=+= α , (16) 
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An additional equation came from the origin of 
coordinates: 

 
 )0()0()0,0(ˆ

21 ˆˆ xx SSz += . (17) 
 
The following last equation of the linear system is 

used in order to give some symmetry to the system: 
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Expressions (15) – (18) contain  parameters 
and form  non-singular linear equations. Therefore, 
the system is solvable. On the other hand, the membership 
functions are obtained by considering again the different 
segments along the diagonals. i.e., if (
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Arriving finally at the general expressions: 
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In case some solution of the system of equations 

verifies 111 += ii αα , it implies that  
and therefore, it suffices to make

)0,ˆ(ˆ)0,ˆ(ˆ 111 += ii xzxz
011 =+iα . By doing that, 

we will obtain denormalized membership functions around 
. Nevertheless, in order to verify properties 4 and 5 in 

Definition 1, these functions can be normalized to the well-
known fuzzy basis functions [

11ˆ +ix

8]. 
 
Results 
 

A simple fuzzy rule system ),,( zμxΦ  is considered 
with 2 inputs  and 2 triangular membership ),( 21 xx=x

[ )(),(),(),( 222221112111 xxxx ]μμμμ=μ  functions that 
divide the input space into 2 segments: 

. These two inputs represent the levels 
of expression of two different genes from a microarray 
experiment at a given conditions, tissue, etc. 

[ 1,0,121 −== ji xx ]

The output of the fuzzy system  models the 
interdependence of a third gene respect to the two input 
genes. In order to determine which fuzzy rule base is the 
best fit for a set of experiments, the possible output 
vectors corresponding to each of the combinations must be 
computed. Tables 1-4 show some examples of these 
combinations, along with their interpretations. The left part 
of each table is the original fuzzy rule table , which is 

not additively separable. The right part show the separation 
performed after the rotation, giving two fuzzy rule tables 

),( 21 xxz

24

ijz

ijα , corresponding each one to one input. For this simple 
example, where 2=n , both tables have the same 
dimensions, since , although the difference will be 
apparent for higher ones. 

nn 22 =

 

Table 1. Rules for , cross-activators 1x 2x

1x /  2x L H   1ω  2ω  
L 0 0  1x̂  -0.125 0.875 

H 0 1  2x̂  1 0 
 

Table 2. Rules for activator, repressor 1x 2x

1x /  2x L H   1ω  2ω  
L 0 0  1x̂  -0.125 0 

H 1 0  2x̂  0.875 -0.125 
 

Table 3. Rules for activator, indifferent 1x 2x

1x /  2x L H   1ω  2ω  
L 0 0  1x̂  -0.25 0.75 

H 1 1  2x̂  0.75 -0.25 
 

Table 4. Rules for , activators with mutual repression 1x 2x

1x /  2x L H   1ω  2ω  
L 0 1  1x̂  -0.25 0 

H 1 0  2x̂  1 0 
 

Figures 1-3 plot the fuzzy system obtained after 
rotation, corresponding to the system shown in Table 1 
(cross-activation of the inputs). Figure 1-2 plot the new 
fuzzy membership functions for input  and  
respectively. In the second case, the membership functions 
are denormalized, due to the facts exposed at the end of the 
previous section. If desired, the membership functions can 
be normalized by using the fuzzy basis function 
transformation, although from a practical point of view, 
there is no advantage from doing that operation.  

1x̂ 2x̂

Figure 3 is the output surface plot for the rotated 
system of Table 1, brought back to the original system of 
coordinates. The computed output coincides at any point 
with the original output, as expected since the 
transformation method is an exact expression. 

 
Discussion 
 

The method presented in this paper allows the 
computation of the output of a particular type of fuzzy 
systems in polynomial time by means of an additive 
separation, and therefore avoiding the exponential time 
associated with the curse of dimensionality. The algorithm 
presented here will be very useful, since this algorithm 
allows to perform an exhaustive and deeper search within 
the data network, and therefore to increase the possibilities 
of finding hidden complex interactions among genes. 
Furthermore, this method can also be used in other data 
mining problems. 
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Fig. 1. Membership functions for of the cross-activator 1x̂
 

 
Fig. 2. Membership functions for of the cross-activator 2x̂
 

 
Fig. 3. Output surface for the crossactivator 
 

The proposed method makes the computation of high 
dimension complex fuzzy systems more feasible. 
Furthermore, this method can also be used in other data 
mining problems in Bioinformatics applications, where it 

is usually necessary to compute a big number of input 
combinations.  

This study has presented the basic idea and has 
shown its reliability by means of a simple example. The 
next step in this research study will be to formalize the 
results for n dimensions, by using the superposition 
property of additive systems. Additionally, the 
development of an open source code library which 
implements the algorithm, and the study of its hardware 
implementation will be another research path to be 
explored. 
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