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Introduction 
 

In the digital signal processing unitary transforms are 
widely used [1]. For simplicity, here we will operate only 
with the real orthonormal transforms and one-dimensional 
signals. It is well known that for the calculation of direct 
transform (spectrum) usually the following matrix 
expression is used: 

xΦy ⋅= ,         (1) 

where Φ is orthonormal matrix with size N by N, but x 
and y – the input and output column-vectors (with size N 
by 1), respectively. To perform the inverse transform we 
need the transposed matrix ΦT instead of Φ: 

yΦx ⋅= T .            (2) 

We use also a well-known and practical restriction for N: 

...,2,1,2 == nN n               (3) 

If necessary, our results related to the estimation of errors 
can be adopted also to the real orthogonal transforms. 
Briefly, in such a case we should use some scaling 
constant(s) for the final correction of error(s).  

Additionally, within this paper only normalized input 
signal has been used: 
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where x(k) is the k-th element of the vector x. Further in 
the text we will skip the index “norm” and consider the 
vector x as normalized. 

The fast algorithms and transforms cover the huge 
area for research [2]. The large amount of papers and 
books deal mainly with well-known fast transforms (FT) 
like FFT, Hadamard FT, Haar FT, wavelets, and so on. In 
our investigation we focus only on the very narrow class 
of real fast orthogonal transforms – CRAFOT (see 
explanations below). We were not able to find a term as 
“constant rotation angle transform” in the literature [3]. 
We suppose that this is a novel class of orthogonal 
functions, and we are ready to discard our results (fully or 

partly) immediately if we plagiarize some results published 
by anybody else. 

The final goal of our work is the implementation of 
CRAFOT into chip and DSP systems with fixed-point 
arithmetic (FPA). The accuracy of calculations by FPA 
DSP depends on the wordlength of processor because we 
have a quantization error. Additionally, the size of 
transform matrix (the length of input vector) impacts the 
accuracy of results. 

The estimation of errors depends on the application 
of CRAFOT. Currently we work on several applications of 
the mentioned algorithm. This paper covers only a small 
part of our work, mainly the estimation of the maximal 
MSE of restoration of signal after the subsequent encoding 
and decoding by the CRAFOT. 

At the time of submission of the paper we consider 
only “preliminary results”. That is because we present only 
the results for the limited number of wordlengths and the 
limited sizes of operands. And we give only a limited 
number of details about the CRAFOT basis functions. On 
the other hand, we are not able to highlight all details in 
such a short paper. 

 
Basics of Fast Orthogonal Transforms 
 

This section is only for illustrative purposes and 
cannot be considered as a strong mathematical description. 
The main goal of this section is to highlight some points 
which are related to FT, and possibly can be useful to the 
readers who are not so familiar with the subject of this 
section. On the other hand, this section is the base for 
understanding of the content of subsequent sections. 

The basic idea is the representation of orthonormal 
(orthogonal) matrix by the product of sparse matrices 
(factorization) Bi: 

n21 BBBΦ ⋅⋅⋅⋅⋅⋅=⋅ nkkkK ...21 ,  (5) 
where 

Nn 2log= ,         (6) 

but K – some scaling factor (the product of scalar constants 
k1, k2, etc.). The subject of the present work is a particular 
case of (5), when we operate only with equal matrices: 
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n21 BBBB ==== ... .      (7) 

The main result of factorization is the principal 
reduction of multiplications and additions for the 
calculation of spectrum (in the algebraic sense) by (1) and 
(2). The mentioned reduction is possible because we 
operate with sparse matrices that contain mainly zeros. 
There are usually only two elements (in some algorithms 
can be more) per column and per row also which are not 
equal to zero (see below). 

 
Interpretation of Fast Orthogonal Transforms by 
Rotation of Planes 
 

In the literature exist different approaches how to 
interpret the matrix B. Unfortunately, we had difficulties 
to find out a clear geometrical interpretation of FT in the 
available books and IEEE papers [3]. Sophisticated 
explanations may be found but they require advanced 
knowledge of matrix algebra to be understood. One of the 
authors of this paper uses comparatively simple 
geometrical interpretation of FT for teaching students over 
many years. 

The idea about the rotation of planes in the Euclidian 
space is not original. This approach is well known, for 
example, from the QR-algorithm [5], [6]. Unfortunately, 
none uses the geometrical interpretation for the 
explanation of FT. However, several viewpoints and 
approaches can be the base for additional benefits. We will 
try to demonstrate some consequences of the present 
approach. 

Rotation Matrixю From the linear algebra [5], [6] is 
well known Given’s rotation matrix that contains the basic 
structure: 
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where φ - rotation angle, but “+” means “clockwise”. 
Further we use the shortcuts for the cosine (c), sine (s) and 
rotation matrices (G, R). Multiplication by G+ means a 
clockwise rotation of plane or Cartesian coordinate system 
by angle φ , if we consider geometrical interpretation. This 
multiplication leads to the changes of two coordinates of 
vector x and we obtain the new coordinates for vector y: 
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where xi, xj – “old” coordinates of vector, but yi, yj – 
coordinates of vector in the rotated coordinate system. 

The structure (8) is not a sole elementary rotation 
matrix. There are several possibilities for the 
representation of matrices like G+ – we may consider the 
anticlockwise rotation, reflection or more sophisticated 
manipulations with plane [5]. For example, the reflection 
matrix: 

++ ⋅







=








−

= GR
01
10

sc
cs

          (10) 

ensures the clockwise rotation with the subsequent 
permutation of coordinates (briefly – the reflection versus 
bisector (between coordinate axes)). The elementary 
Hadamard matrix is a good example for the interpretation 
by reflection matrix: 
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In the N-dimensional Euclidian space we can define 
the infinite number of orthonormal basis. Each pair of 
basis vectors represents one plane, and the basis can be 
interpreted as a set of N/2 independent planes (for N 
defined by (3)). There are a lot of combinations for the 
choice of pairs of vectors, but it is not so important for this 
paper. 

For the rotation of each pair of basis vectors (or each 
plane) we may use a rotation matrix like (8), (10) or other. 
Since we have N/2 independent planes it is possible to 
rotate all of these planes simultaneously. In the matrix 
notation that means the using of: 
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where ci and si represents the cosine and sine values for the 
i-th rotation. The index “R” means that we use the rotation 
matrix defined by (10) as the basic structure for BR. But 
we do not limit the structure of elementary rotation matrix 
only by (10). Other rotation structures are also allowed in 
(12). Generally we can use N/2 different angles for 
definition of BR. The next steps of generalization are for 
the papers in the future. 

The main feature of this sparse matrix is that each 
row/column contains only two elements that are not equal 
to zero. The second important feature is the “stairs-like” 
placement of rows of elementary rotation matrices in the 
upper and in the lower part of BR.  

Constant Rotation Angle Fast Transform. In this 
paper we limit our efforts to the narrow and novel class of 
orthonormal basis functions (BF). We assume that all 
angles for the definition of (12) are equal. In this case: 
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Now from (5), (7), (12) and (13) we get: 

nBBBBΦ =⋅⋅⋅= 43421
n

K ...                 (14) 

(12)
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We ignore the index “R” and assume that generally 
for the building of B there can be used different rotation 
matrices like (8) or (10), or other. Further we will talk 
about CRAFOT without the strong restrictions on the kind 
of elementary rotation matrix. In some cases (if necessary) 
we will add the index that corresponds to the “basic brick” 
of B. 

We use the term CRAFOT within this paper only. 
Possibly, we can look at the presented algorithm as a 
particular case of the unified approach for the generation 
of fast unitary transforms [7]. That is not so principal 
question because the main goal of this work is the 
estimation of errors but not so much the strong 
mathematical definition or presentation of CRAFOT in 
details. 

 
Constant Rotation Angle Orthogonal Transform 
 

The Constant Rotation Angle Orthogonal Transform 
(CRAOT) can be presented in the factorized form (14) or 
as the result of the product of matrices B. Talking about 
FT we mean CRAFOT, but using of CRAOT can be handy 
in other cases. The factorized form (14) is more practical 
for the implementation, but the matrix Φ better describes 
the properties of CRAOT. It is like the mutual relation 
between DFT and FFT. 

We save a detailed investigation of properties of 
CRAOT for the future. Here we present only the 
introductory description of properties without strong 
mathematical proof, and we suppose that our description is 
only a preliminary description. Some properties come from 
the basics of linear algebra. For example, an orthogonality 
follows from the mathematical fact that the product of 
orthogonal matrices is also an orthogonal matrix. 

The shape of CRAOT BF depends on the chosen 
rotation angle. For φ = 0° we have the well-known set of 
orthonormal δ-functions, but for φ = 45° we get the 
Hadamard matrix: 
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where HN – the Hadamard matrix of order N. If we 
represent Hadamard matrix as the product of rotation 
matrices (terms) BR, we must provide the scaling constant 
for each factor. That is necessary to avoid multiplications. 

For other rotation angles we have the rich diversity of 
the shapes of BF. Next figure shows a typical BF. 
Possibly, each BF we may characterize as a “pulse-like 
self-similar sequence”. On the other hand we can treat the 
shown BF as a pulse sequence with echo (for N/2 
samples). Maybe the name “echo functions” is the best and 
concise characteristic of CRAOT, however there is a 
well-known and similar term in telecommunications [8]. 
When we increase the rotation angle (near to 45°), we 
obtain “damaged Hadamard functions”. 

From one of the theorems proven by Good [9] it 
follows that the Kronecker power of matrix (the Kronecker 
product of equal matrices) can be expressed as the power 
of sparse matrices (12): 
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Fig. 1. Basis function with the index p=12 for the rotation angle 
φ=18° and N=64 
 

We may use the G instead of R and BG instead of BR 
if necessary. From (16) it follows that the value of 
CRAOT BF can be written also as the product of the 
power of sine and cosine values: 
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p – the index of row of Φ (the index of BF), t – the index 
of column (the index of sample of BF), pi, ti – the value of 
the i-th bit of p and t, respectively. The “roof” label x  
means the binary inversion of bit. Formulas (18) are useful 
only for the rotation matrix R+ and follow from the 
Kronecker product (16) and the next truth table: 
 

Table 1. “Selector” of multipliers (for R+) 
pi\ti 0 1 
0 s c 
1 c -s 

 
For the other kinds of rotation matrices we should 

rewrite the  table accordingly. 
From (17) it follows that CRAOT BF has the 

maximum (for the module of BF). The position of the 
maximum is at t = p. An exception is the Hadamard 
functions. The maximum is more remarkable for small 
rotation angles and decreases by increasing the angle. 
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The use of (14) provides the simplest and fastest way 
to generate the full (N) set of BF. In some cases we need 
only one or few BF. Then formula (17) comes in very 
handy. 

 
Sources and definitions of Errors 
 

Quantization and Quantization Errors (QE). We 
deal only with the QE in this paper. We use the 
well-known quantization rule for the scalars and operands: 
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where 
)12/()( minmax −−= nbits

qq eeq         (20) 

– quantization step, nbits – the wordlength of quantized 
value, but e – the value of x, y, s, c ∈ [–1, 1] and 
φ ∈ [0, π/2] (or [0, 90°]). The index “q” indicates that we 
use the quantized value. Readers should remember that we 
talk only about the digital system. It means that the 
quantization of input signal makes sense only in the case if 
we use the quantization with the reduced number of bits. 
Additionally, the rotation angle must be chosen from the 
finite set of values (depends on the wordlength of 
quantized angle). 

The QE can be written as 

eee −= qδ ,           (21) 

where e – the name of selected scalar or vector (s, c, x, y).  
Figure 2 shows the changes of the normalized (to the 

quantization step) QE for trigonometric functions versus 
the rotation angle. Such picture is typical for the QE. The 
frequency of oscillations of QE increases by the 
wordlength of angle. We observe also a mutual 
mirror-symmetry between the sine and cosine QE, and the 
central symmetry for the squared error around 45°. 

Primary and Secondary Errors. We can distinguish 
here the primary and secondary errors. The primary errors 
are caused by the direct corruption (quantization) of 
scalars and operands. This kind of error is defined above 
by (21). 

The secondary errors appear as the consequences of 
calculation of transforms. The definition of the secondary 
error is the following: 

ee∆e −= ˆ .            (22) 

In this case the corrupted value or operand is marked 
by “^”.  

Corruption Scheme. The next scheme-formula 
illustrates the corruption of operands for each stage of 
signal transformation if we implement the subsequent 
direct and inverse transforms: 

⇒+⇒⋅+⇒+ yyxΦΦxx ∆∆δ q)(  

xxyΦΦyy ˆˆ)(ˆˆ ∆∆δ +⇒⋅+⇒+⇒ q
TT .       (23) 

This scheme is simplified and symbolic enough. For 
example, the corruption of Φ is complicated and that 
cannot be interpreted as only additive by its nature.  

If we use the CRAFOT for the encoding of signal 
with the subsequent decoding of encoded signal, the error 
of restoration of input signal can be expressed as: 
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Fig. 2. QE (normalized to the quantization step) for the sine and 
cosine functions versus the rotation angle 

 

Definition of Errors. Further we will use the 
maximal normalized (to quantization step) MSE (more 
precisely, Euclidean norm): 
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and the upper limit of this error: 

)(max max
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where )(ˆ ix p∆  is the i-th element of px∆ˆ . For simulation 

we use a set of M random input signals. The index “p” 
means the index of trial. We ignore the division by N in 
the formula (26) because the vector x is normalized before 
(see (4)). 
 
Numerical Results 
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The present results are useful for Q1.x FPA [10].  
CRAFOT Simulation. The basic tool for the 

calculation of errors is the CRAFOT simulator together 
with some additional functions. This tool is an interactive 
program coded in MATLAB, containing approximately 
1000 lines. 

We performed simulation of CRAFOT for rotation 
angles within the range from 0 to 45 degrees. Next figure 
demonstrates the typical behavior of error depending on 
the rotation angle and the size of operands N for the fixed 
value of wordlength. We see the significant oscillations of 
error defined by (26) versus the rotation angle. 

Such behavior of error is caused by the nature of QE. 
The QE of sine and cosine has serious oscillations as we 
see below (fig. 3). 

 
Fig. 3. The maximal normalized MSE depending on the rotation 
angle and the size of operands for nbits = 8 

Our experiments show that the errors (26) differ by 
about 10-20 times (also for the large number of trials) 
depending on the rotation angle. This means that we need 
also the detailed investigation of the lower limit and 
distribution of MSE (supplementary to (27)). That can help 
in the choice of optimal angles (from the viewpoint of 
error) for the implementation of CRAFOT. 

We would like also to add some words about the 
conditions of simulation. We used randomly generated 
input signal vectors. The number of trials lies in the range 
from 50 to 100 for each point of calculations. There are 
different results for the input signals with uniform 
probability density function (PDF) and normal PDF (the 
variance equal to 1 before normalization). This paper 
presents only results related to normal PDF. 

Behavior of Upper Limit of Error. The oscillation 
of error is the reason for the use of upper limit (27) of 
MSE (further simply - error). Next figures show the 
behavior of error (calculated by (27) and marked as “all 
sources of QE“) versus the wordlength of operands. 

 
Fig. 4. The upper limit of maximal normalized MSE for 
different kind of sources of QE versus the wordlength of 
operands. N = 256 

The oscillation of upper limit around 11 seems 
strange only at first sight. We should remember that we 
operate with the error normalized to quantization step q. 
This means that we have the decreasing of the value of 
“unnormalized” error by the increasing of wordlength of 
operands in reality. We estimate the value of error as a 
constant (12q, if nbits=8) for the practical needs. 

As shown in figure 5, the error increases 
logarithmically depending on the size of operands. For the 
practical needs the logarithmic relationship between the N 
and error can be useful: 

)()(maxmax, nbitsbnnbitsknorm +⋅≡ε ,   (28) 

where n is defined by the logarithm (6), k∈[1, 1.4] and 
b∈[0, 2]. The values of k and b are the functions of the 
wordlength of operands. For example, k(8) = 1.1 and 
b(8) = 1.7. Unfortunately, the changes of k and b are not 
monotonous, and we are not able to present simple 
formulas for that. The accuracy of (28) depends on the 
model used for fitting (on the number of terms). The linear 
model ensures the accuracy within the range 5-15%. 
Formula (28) is useful only for the case when all the 
sources of QE are taken into account. 

 
Fig. 5. The upper limit of maximal normalized MSE for different 
kind of sources of QE versus the size of operands. nbits = 8 
 

Impact of Different Sources of Errors. We 
simulated the impact of different sources of QE, which 
correspond to corruption scheme (23). The figures 4 and 5 
show the behavior of error when we observe or ignore 
different sources of errors. If we use the same wordlength 
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for all the operands, the impact of quantization of sine and 
cosine dominates. We can ignore the impact of 
quantization of input vector and spectrum for N > 32, if we 
allow the inaccuracy up to 15%. On the other hand, 
obtained results indicate that we must use more accurate 
quantization for the trigonometric functions than is needed 
for the signal vector or spectrum. 

 
Conclusions  
 

The main conclusions: 
• The upper limit of MSE of restoration of signal is 

practically constant depending on the wordlength of 
CRAFOT operands and practically linear (in the 
logarithmic scale) versus the size of operands. 

• The upper limit of MSE of restoration of signal is 
overestimated for many rotation angles. We need more 
realistic and detailed estimation in the near future. 

• Potential applications of CRAFOT could be signal 
compression systems and “echo signal systems” (audio 
signal processing, biology etc.) 

• We need a further and more detailed investigation 
of the properties of CRAOT. 
 
References 

 
1. Mitra S.K., Kaiser J.F., Handbook for Digital Signal 

Processing. - John Wiley & Sons, New York, 1993. 
2. .Blahut R. E. Fast Algorithms for Digital Signal Processing. 

– Addison-Wesley, New York, 1985. 
3. Trahtman A.M., Trahtman V.A. The Basics of Theory of 

Finite Digital Signals. - Sovetskoje Radio, Moscow, 1975. (in 
Russian) 

4. Lopez R.J. Advanced Engineering Mathematics - Addison 
Wesley, Boston, 2001. 

5. Golub G.H, Van Loan C.E. Matrix Computations. Second 
Edition. - The Johns Hopkins University Press, London, 
1990. 

6. Fino B.J., Algazi V. Ralph A. A Unified Treatment of 
Discrete Fast Unitary Transforms //  SIAM J. Comput., 1977, 
6,  No. 4, pp. 700-717. 

7. Good I. J., The interaction algorithm and practical Fourier 
analysis // “J. Royal Stat. Soc.”, London, 1958, Vol. B-20, 
pp.361-372. 

8. Oberstar E.L. Fixed Point Representation And Fractional 
Math // Oberstar Consulting, 07/17/2004, 9 pages. 

 
 
 

Pateikta spaudai 2005 04 12 

 
P. Misans, M. Terauds. Greito ortogonalinio signalų keitimo klaidos esant pastoviam antenos sukimosi greičiui // Elektronika ir 
elektrotechnika. – Kaunas: Technologija, 2005. – Nr. 4(60). – P. 17–22. 

Pateikiamas trumpas greito ortogonalinio keitiklio su pastoviu sukimosi kampu (GOKPSK) aprašymas. Pagrindinis 
dėmesys skiriamas GOKPSK klaidų, kurias sąlygoja įėjimo signalo kvantavimas ir ilgio, bei keitimo matricos dydis, 
analizei. Gauti rezultatai rodo žymias klaidų osciliacijas priklausomai nuo sukimosi kampo. Pateikiama viršutinė signalo 
kvantavimo vidutinės kvadratinės paklaidos atkuriant signalą riba (po tiesioginio ir atgalinio keitimo). Atkūrimo paklaidą 
galima laikyti pastovia priklausomai nuo GOKPSK operandų pateikimo žodžio ilgio, ir praktiškai tiesine (logaritminaime 
mastelyje) priklausomai nuo GOKPSK operandų dydžio. Il. 5, bibl. 8 (anglų kalba; santraukos lietuvių, anglų ir rusų k.). 

 
P. Misans, M. Terauds. Errors of Constant Rotation Angle Fast Orthogonal Transform Used for Fixed-Point Arithmetic DSP 
Applications: Preliminary Results // Electronics and Electrical Engineering. – Kaunas: Technologija, 2005. – No. 4(60). – P. 17–
22. 

A brief description of the constant rotation angle fast orthogonal transform (CRAFOT) is presented. The main goal of the present 
work is the investigation of the errors of CRAFOT algorithm caused by the quantization and the size of operands (the input signal 
vector and the transform matrix). The obtained results show significant error oscillations that depend on the rotation angle. The paper 
presents the upper limit of the normalized to the quantization step the maximal mean-squared error (MSE) of restoration of signal (after 
the subsequent direct and inverse transform). The restoration error is approximately constant depending on the wordlength of CRAFOT 
operands and practically linear (in the logarithmic scale) versus the size of operands. Ill. 5, bibl. 8 (in English, summaries in Lithuanian, 
English, Russian). 

П. Мисанс, М. Тэраудс. Ошибки быстрого ортогонального преобразования с постоянным углом вращения для 
использования в ЦОС применениях с фиксированной запятой: Предварительные результаты // Электроника и 
электротехника. – Каунас: Технология, 2005. – № 4(60). – С. 17–22. 

Приводится краткое описание быстрого ортогонального преобразования с постоянным углом вращения (БОППУВ). 
Центрадьное место в работе занимает исследование ощибок БОППУВ, вызванных квантованием и конечной длиной входного 
сигнала и размером матрицы преобразования. Полученные результаты показывают существенные осцилляции ошибок в 
зависимости от угла вращения. В статье представляется верхний предел нормированной к шагу квантования максимальной 
среднеквадратической ошибки восстановления сигнала (после прямого и обратного преобразования). Ошибку восстановления 
можно считать примерно постоянной в зависимости от длины слова представления операндов БОППУВ и практически 
линейной (в логарифмическом масштабе) в зависимости от размера операндов БОППУВ. Ил. 5, библ. 8 (на английском языке; 
рефераты на литовском, английском и русском яз.). 
 


