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Introduction

In the digital signal processing unitary transforms are
widely used [1]. For simplicity, here we will operate only
with the real orthonormal transforms and one-dimensional
signals. It is well known that for the calculation of direct
transform (spectrum) usually the following matrix
expression is used:

y=0-x, (1)
where @ is orthonormal matrix with size N by N, but x
and y — the input and output column-vectors (with size N
by 1), respectively. To perform the inverse transform we
need the transposed matrix ®" instead of ®:

x=0T .y, )

We use also a well-known and practical restriction for /V:
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If necessary, our results related to the estimation of errors
can be adopted also to the real orthogonal transforms.
Briefly, in such a case we should use some scaling
constant(s) for the final correction of error(s).

Additionally, within this paper only normalized input
signal has been used:

N
Xporm(K) = x(k)q/ > xim),
m=1

where x(k) is the k-th element of the vector X. Further in
the text we will skip the index “norm” and consider the

N=2", n=12,..

“

vector X as normalized.

The fast algorithms and transforms cover the huge
area for research [2]. The large amount of papers and
books deal mainly with well-known fast transforms (FT)
like FFT, Hadamard FT, Haar FT, wavelets, and so on. In
our investigation we focus only on the very narrow class
of real fast orthogonal transforms — CRAFOT (see
explanations below). We were not able to find a term as
“constant rotation angle transform” in the literature [3].
We suppose that this is a novel class of orthogonal
functions, and we are ready to discard our results (fully or
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partly) immediately if we plagiarize some results published
by anybody else.

The final goal of our work is the implementation of
CRAFOT into chip and DSP systems with fixed-point
arithmetic (FPA). The accuracy of calculations by FPA
DSP depends on the wordlength of processor because we
have a quantization error. Additionally, the size of
transform matrix (the length of input vector) impacts the
accuracy of results.

The estimation of errors depends on the application
of CRAFOT. Currently we work on several applications of
the mentioned algorithm. This paper covers only a small
part of our work, mainly the estimation of the maximal
MSE of restoration of signal after the subsequent encoding
and decoding by the CRAFOT.

At the time of submission of the paper we consider
only “preliminary results”. That is because we present only
the results for the limited number of wordlengths and the
limited sizes of operands. And we give only a limited
number of details about the CRAFOT basis functions. On
the other hand, we are not able to highlight all details in
such a short paper.

Basics of Fast Orthogonal Transforms

This section is only for illustrative purposes and
cannot be considered as a strong mathematical description.
The main goal of this section is to highlight some points
which are related to FT, and possibly can be useful to the
readers who are not so familiar with the subject of this
section. On the other hand, this section is the base for
understanding of the content of subsequent sections.

The basic idea is the representation of orthonormal
(orthogonal) matrix by the product of sparse matrices
(factorization) B;:

K-®=k By -ky-By-..-k, B 5)

n-
where

(6)

but K — some scaling factor (the product of scalar constants
ki, k>, etc.). The subject of the present work is a particular
case of (5), when we operate only with equal matrices:

n=log, N,



B=B1=B2:...:Bn. (7)

The main result of factorization is the principal
reduction of multiplications and additions for the
calculation of spectrum (in the algebraic sense) by (1) and
(2). The mentioned reduction is possible because we
operate with sparse matrices that contain mainly zeros.
There are usually only two elements (in some algorithms
can be more) per column and per row also which are not
equal to zero (see below).

Interpretation of Fast Orthogonal Transforms by
Rotation of Planes

In the literature exist different approaches how to
interpret the matrix B. Unfortunately, we had difficulties
to find out a clear geometrical interpretation of FT in the
available books and IEEE papers [3]. Sophisticated
explanations may be found but they require advanced
knowledge of matrix algebra to be understood. One of the

authors of this paper uses comparatively simple
geometrical interpretation of FT for teaching students over
many years.

The idea about the rotation of planes in the Euclidian
space is not original. This approach is well known, for
example, from the QR-algorithm [5], [6]. Unfortunately,
none uses the geometrical interpretation for the
explanation of FT. However, several viewpoints and
approaches can be the base for additional benefits. We will
try to demonstrate some consequences of the present
approach.

Rotation Matrixio From the linear algebra [5], [6] is
well known Given’s rotation matrix that contains the basic

structure:
—sing| |c¢ —s
cosqﬁ}_{s c} ®

where ¢ - rotation angle, but “+” means “clockwise”.
Further we use the shortcuts for the cosine (c), sine (s) and
rotation matrices (G, R). Multiplication by G, means a
clockwise rotation of plane or Cartesian coordinate system
by angle ¢, if we consider geometrical interpretation. This
multiplication leads to the changes of two coordinates of
vector x and we obtain the new coordinates for vector y:

V; G- X |_|eximsx, ’ ©
Y, X; sex,+ceXx;

where X;, X; — “old” coordinates of vector, but y;, y; —
coordinates of vector in the rotated coordinate system.

The structure (8) is not a sole elementary rotation
matrix. There are several possibilities for the
representation of matrices like G, — we may consider the
anticlockwise rotation, reflection or more sophisticated
manipulations with plane [5]. For example, the reflection

matrix:
R s c_O 1 G
Yle —s| |10 *

cos¢

G+(¢)={

sin ¢

(10)

ensures the clockwise rotation with the subsequent
permutation of coordinates (briefly — the reflection versus
bisector (between coordinate axes)). The elementary
Hadamard matrix is a good example for the interpretation
by reflection matrix:

B ﬁ{ll

N, =Y
2 1 -1

2 5 11

:|:R+(%)

In the N-dimensional Euclidian space we can define
the infinite number of orthonormal basis. Each pair of
basis vectors represents one plane, and the basis can be
interpreted as a set of N/2 independent planes (for N
defined by (3)). There are a lot of combinations for the
choice of pairs of vectors, but it is not so important for this
paper.

For the rotation of each pair of basis vectors (or each
plane) we may use a rotation matrix like (8), (10) or other.
Since we have N/2 independent planes it is possible to
rotate all of these planes simultaneously. In the matrix
notation that means the using of:

N
(s ¢ 0 0 0 |
Sl Cl 0
0 0 S2 6‘2
0 0 0 0 0 © SN ey
— —1
— 2 2
BR‘CO -5 0 0 0 0 .. 0 0 N.(12)
0 0 ¢ -5 0 0 .. 0 0
0 0 0 0 ¢ =-s5 .. O 0
0 0 0 0 0 0 .. cy ~—sy
771 371_

where ¢; and s; represents the cosine and sine values for the
i-th rotation. The index “R” means that we use the rotation
matrix defined by (10) as the basic structure for Bg. But
we do not limit the structure of elementary rotation matrix
only by (10). Other rotation structures are also allowed in
(12). Generally we can use N/2 different angles for
definition of Bg. The next steps of generalization are for
the papers in the future.

The main feature of this sparse matrix is that each
row/column contains only two elements that are not equal
to zero. The second important feature is the “stairs-like”
placement of rows of elementary rotation matrices in the
upper and in the lower part of Bg.

Constant Rotation Angle Fast Transform. In this
paper we limit our efforts to the narrow and novel class of
orthonormal basis functions (BF). We assume that all
angles for the definition of (12) are equal. In this case:

C=C|=Cy=..=CpN , S=8§]=8) =..=8y (13)
?—1 E—l
Now from (5), (7), (12) and (13) we get:
®=K-B-B-.B=B" (14)
%,—/

n



We ignore the index “R” and assume that generally
for the building of B there can be used different rotation
matrices like (8) or (10), or other. Further we will talk
about CRAFOT without the strong restrictions on the kind
of elementary rotation matrix. In some cases (if necessary)
we will add the index that corresponds to the “basic brick”
of B.

We use the term CRAFOT within this paper only.
Possibly, we can look at the presented algorithm as a
particular case of the unified approach for the generation
of fast unitary transforms [7]. That is not so principal
question because the main goal of this work is the
estimation of errors but not so much the strong
mathematical definition or presentation of CRAFOT in
details.

Constant Rotation Angle Orthogonal Transform

The Constant Rotation Angle Orthogonal Transform
(CRAOT) can be presented in the factorized form (14) or
as the result of the product of matrices B. Talking about
FT we mean CRAFOT, but using of CRAOT can be handy
in other cases. The factorized form (14) is more practical
for the implementation, but the matrix @ better describes
the properties of CRAOT. It is like the mutual relation
between DFT and FFT.

We save a detailed investigation of properties of
CRAOT for the future. Here we present only the
introductory description of properties without strong
mathematical proof, and we suppose that our description is
only a preliminary description. Some properties come from
the basics of linear algebra. For example, an orthogonality
follows from the mathematical fact that the product of
orthogonal matrices is also an orthogonal matrix.

The shape of CRAOT BF depends on the chosen
rotation angle. For ¢ = 0° we have the well-known set of
orthonormal oJ-functions, but for ¢ = 45° we get the
Hadamard matrix:

@, ()=(2-Bp ()" =Hy=H (15)

2’1 b
where Hy — the Hadamard matrix of order N. If we
represent Hadamard matrix as the product of rotation
matrices (terms) Br, we must provide the scaling constant
for each factor. That is necessary to avoid multiplications.

For other rotation angles we have the rich diversity of
the shapes of BF. Next figure shows a typical BF.
Possibly, each BF we may characterize as a “pulse-like
self-similar sequence”. On the other hand we can treat the
shown BF as a pulse sequence with echo (for N/2
samples). Maybe the name “echo functions” is the best and
concise characteristic of CRAOT, however there is a
well-known and similar term in telecommunications [8].
When we increase the rotation angle (near to 45°), we
obtain “damaged Hadamard functions”.

From one of the theorems proven by Good [9] it
follows that the Kronecker power of matrix (the Kronecker
product of equal matrices) can be expressed as the power
of sparse matrices (12):
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}:R+ ®..®R, =B%. (16)
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Fig. 1. Basis function with the index p=12 for the rotation angle
$=18° and N=64

We may use the G instead of R and Bg instead of Bg
if necessary. From (16) it follows that the value of
CRAOT BF can be written also as the product of the
power of sine and cosine values:

@(p,t)zri:[l(—l)a‘ L gmi(pt) | Ki(pi) ,

(17)
i=0
where
ai(p7t) =D 'ti’ pat € [07 N_l]a
m;(p,t) = p; - t; + p; - 1;,
ki(p,t) = p; t; + p; - 1;, (18)

n—1
> mi(p,t)+ki(p,t)=n, ie[0,n—1],
i=0

p — the index of row of ® (the index of BF), ¢ — the index
of column (the index of sample of BF), p,, t; — the value of
the i-th bit of p and ¢, respectively. The “roof” label X
means the binary inversion of bit. Formulas (18) are useful
only for the rotation matrix R, and follow from the
Kronecker product (16) and the next truth table:

Table 1. “Selector” of multipliers (for Ry)
pilt; 0 1
0 S c
1 Cc -S

For the other kinds of rotation matrices we should
rewrite the table accordingly.

From (17) it follows that CRAOT BF has the
maximum (for the module of BF). The position of the
maximum is at £ = p. An exception is the Hadamard
functions. The maximum is more remarkable for small
rotation angles and decreases by increasing the angle.




The use of (14) provides the simplest and fastest way
to generate the full (N) set of BF. In some cases we need
only one or few BF. Then formula (17) comes in very
handy.

Sources and definitions of Errors

Quantization and Quantization Errors (QE). We
deal only with the QE in this paper. We use the
well-known quantization rule for the scalars and operands:

€4 min> for es €4 min,
e—e, :
- g min 19
€y = round[qj *q+ €4 min> for ee (eq min>€q max)> (19)
€4 max> for e> €4 max>
where

q = (Cqmax — €qmin) /(2" 1) (20)

— quantization step, nbits — the wordlength of quantized
value, but e — the value of x, y, s, ¢ € [-1, 1] and
¢ € [0, /2] (or [0, 90°]). The index “q” indicates that we
use the quantized value. Readers should remember that we
talk only about the digital system. It means that the
quantization of input signal makes sense only in the case if
we use the quantization with the reduced number of bits.
Additionally, the rotation angle must be chosen from the
finite set of values (depends on the wordlength of
quantized angle).
The QE can be written as

ce=e,—e, 21

where e — the name of selected scalar or vector (s, ¢, X, y).

Figure 2 shows the changes of the normalized (to the
quantization step) QE for trigonometric functions versus
the rotation angle. Such picture is typical for the QE. The
frequency of oscillations of QE increases by the
wordlength of angle. We observe also a mutual
mirror-symmetry between the sine and cosine QE, and the
central symmetry for the squared error around 45°.

Primary and Secondary Errors. We can distinguish
here the primary and secondary errors. The primary errors
are caused by the direct corruption (quantization) of
scalars and operands. This kind of error is defined above
by (21).

The secondary errors appear as the consequences of
calculation of transforms. The definition of the secondary
error is the following:

Ae=¢é—e. (22)

In this case the corrupted value or operand is marked
by “A”.

Corruption Scheme. The next scheme-formula
illustrates the corruption of operands for each stage of
signal transformation if we implement the subsequent
direct and inverse transforms:

X+0Xx = ((I)+A(I>)-xq =>y+dy >

:57+@:>(®T+A®T)~§fq:>x+m}. (23)
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This scheme is simplified and symbolic enough. For
example, the corruption of @ is complicated and that
cannot be interpreted as only additive by its nature.

If we use the CRAFOT for the encoding of signal
with the subsequent decoding of encoded signal, the error
of restoration of input signal can be expressed as:

A= (®-x,), -0 (®x)=

=B, B, ...B,) ¥, -x, (24)
n
where
y,=B, B, ..B, X, (25)

Normalized SIN quantization error B Npits = 8

Normalized COS quantization error 8 Npits = 8
0.5

(2,522 _
35c™(Bc+g) s Mg = 8

Rotation angle ¢°

Fig. 2. QE (normalized to the quantization step) for the sine and
cosine functions versus the rotation angle

Definition of Errors. Further we will use the
maximal normalized (to quantization step) MSE (more
precisely, Euclidean norm):

1Y,
Epopwy = Max | — ZAzxp ) (26)
pell, M g | =1
and the upper limit of this error:
gmax,max — max gmax , 27
norm ¢E[0’7[/4]( norm ( )

where A%, (i) is the i-th element of AX . For simulation

we use a set of M random input signals. The index “p”
means the index of trial. We ignore the division by N in
the formula (26) because the vector x is normalized before

(see (4)).

Numerical Results



The present results are useful for Q1.x FPA [10].

CRAFOT Simulation. The basic tool for the
calculation of errors is the CRAFOT simulator together
with some additional functions. This tool is an interactive
program coded in MATLAB, containing approximately
1000 lines.

We performed simulation of CRAFOT for rotation
angles within the range from 0 to 45 degrees. Next figure
demonstrates the typical behavior of error depending on
the rotation angle and the size of operands N for the fixed
value of wordlength. We see the significant oscillations of
error defined by (26) versus the rotation angle.

Such behavior of error is caused by the nature of QE.
The QE of sine and cosine has serious oscillations as we
see below (fig. 3).

Fig. 3. The maximal normalized MSE depending on the rotation
angle and the size of operands for nbits = 8

Our experiments show that the errors (26) differ by
about 10-20 times (also for the large number of trials)
depending on the rotation angle. This means that we need
also the detailed investigation of the lower limit and
distribution of MSE (supplementary to (27)). That can help
in the choice of optimal angles (from the viewpoint of
error) for the implementation of CRAFOT.

We would like also to add some words about the
conditions of simulation. We used randomly generated
input signal vectors. The number of trials lies in the range
from 50 to 100 for each point of calculations. There are
different results for the input signals with uniform
probability density function (PDF) and normal PDF (the
variance equal to 1 before normalization). This paper
presents only results related to normal PDF.

Behavior of Upper Limit of Error. The oscillation
of error is the reason for the use of upper limit (27) of
MSE (further simply - error). Next figures show the
behavior of error (calculated by (27) and marked as “all
sources of QE®) versus the wordlength of operands.
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Upper Limit of Nermalized Maximal Error, N
T T T T

=256
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—=— only input signal QE "on” |
—=— only sin, cos QE "on"

—&— only spectrum QE "on"
w —«— all sources of QE "on"

qNordIensth (nbits)8
Fig. 4. The upper limit of maximal normalized MSE for
different kind of sources of QE versus the wordlength of
operands. N =256

The oscillation of upper limit around 11 seems
strange only at first sight. We should remember that we
operate with the error normalized to quantization step gq.
This means that we have the decreasing of the value of
“unnormalized” error by the increasing of wordlength of
operands in reality. We estimate the value of error as a
constant (12q, if nbits=8) for the practical needs.

As shown in figure 5, the error increases
logarithmically depending on the size of operands. For the
practical needs the logarithmic relationship between the N
and error can be useful:

max, max

gnorm

= k(nbits) - n + b(nbits) , (28)

where n is defined by the logarithm (6), k€[1, 1.4] and
be|0, 2]. The values of k and b are the functions of the
wordlength of operands. For example, k(§)=1.1 and
b(8) =1.7. Unfortunately, the changes of k£ and b are not
monotonous, and we are not able to present simple
formulas for that. The accuracy of (28) depends on the
model used for fitting (on the number of terms). The linear
model ensures the accuracy within the range 5-15%.
Formula (28) is useful only for the case when all the
sources of QE are taken into account.

Upper Limit of Normalized Maximal Error, nbits = 8
1 H T

max,max
norm

--| =& only input signal QE "on" |---------
—&— only sin, cos QE "on"
-'| —&— only spectrum QE "on"
—s— all sources of QE "on"

€

n= Io5g2(N),(N - number of sarr?lples)
Fig. 5. The upper limit of maximal normalized MSE for different
kind of sources of QE versus the size of operands. nbits = 8

Impact of Different Sources of Errors. We
simulated the impact of different sources of QE, which
correspond to corruption scheme (23). The figures 4 and 5
show the behavior of error when we observe or ignore
different sources of errors. If we use the same wordlength



for all the operands, the impact of quantization of sine and

cosine dominates. We can ignore the impact of 1. Mitra .S.K., Kaisel.' J.F., Handbook for Digital Signal
quantization of input vector and spectrum for N > 32, if we Processing. - John Wiley & Sons, New York, 1993. )
allow the inaccuracy up to 15%. On the other hand 2. .Blahut R. E. Fast Algorithms for Digital Signal Processing.
obtained results indicate that we must use more accurate — Addison-Wesley, New York, 1985.

ation for the iri i f . han i ded 3. Trahtman A.M., Trahtman V.A. The Basics of Theory of
quantization for the trigonometric functions than 1s neede Finite Digital Signals. - Sovetskoje Radio, Moscow, 1975. (in

for the signal vector or spectrum. Russian)
4. Lopez R.J. Advanced Engineering Mathematics - Addison
Conclusions Wesley, Boston, 2001.
5. Golub G.H, Van Loan C.E. Matrix Computations. Second
The main conclusions: Edition. - The Johns Hopkins University Press, London,

1990.
6. Fino B.J., Algazi V. Ralph A. A Unified Treatment of
Discrete Fast Unitary Transforms // SIAM J. Comput., 1977,

e The upper limit of MSE of restoration of signal is
practically constant depending on the wordlength of

CRAFOT operands and practically linear (in the 6, No. 4, pp. 700-717.

logarithmic scale) versus the size of operands. 7. Good L. J., The interaction algorithm and practical Fourier
e The upper limit of MSE of restoration of signal is analysis // “J. Royal Stat. Soc.”, London, 1958, Vol. B-20,

overestimated for many rotation angles. We need more pp.361-372.

realistic and detailed estimation in the near future. 8. Oberstar E.L. Fixed Point Representation And Fractional

e Potential applications of CRAFOT could be signal Math // Oberstar Consulting, 07/17/2004, 9 pages.

compression systems and “echo signal systems” (audio
signal processing, biology etc.)

e We need a further and more detailed investigation Pateikta spaudai 2005 04 12
of the properties of CRAOT.
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