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Introduction 
 
 A signal is stationary if its statistical characteristics 
do not change with time. Signals of practical interest often 
do not comply with this requirement [1]. It has been quit 
difficult to satisfactorily handle non-stationary signals 
using conceptualizations based on stationarity, as it is 
assumed, for example, by classical Fourier transform. Non-
stationary signals justify the need for joint time-frequency 
analysis and representation. 
 Non-stationary signals may be divided into two types: 
momentarily transient and persistent. The momentarily 
transient signal has a brief, finite duration. The persistent 
non-stationary signal has continuous time-varying 
behavior. In practice the time-frequency representation is 
characterized by points on a time-frequency gram with a 
finite duration time axis and finite bandwidth frequency 
axis. 
 Time-frequency analysis typically deals with signals 
for which the instantaneous frequency bandwidth is 
considerably narrower than the whole bandwidth of signal 
spectral characteristics [2]. As examples can be quoted 
chirps, Doppler signals, frequency tracking etc. To process 
signals digitally they should be sampled. The Nyquist 
criterion gives us a theoretical limit to what rate we have to 
periodically sample a signal that contains data at a certain 
maximum frequency. Once we sample below the Nyquist 
rate we get the spectral analysis results, which have 
corrupting artifacts – so called “aliases”. A dilemma 
concerning the choice of sampling rate arises: on the one 
hand the maximum signal frequency defines sampling 
frequency according to Nyquist, while on the other hand 
the narrow instantaneous bandwidth of signal at each time 
moment allows a considerably lower sampling density. 
One possible course of action in such a case is to use a 
nonuniform sampling technique. The proper application of 
nonuniform sampling suppresses the frequency aliasing 
and allows the use of a sampling density below the Nyquist 
rate [3]. 
 It should be stated that nonuniformly taken signal 
samples require the focusing of more attention on the 
signal processing algorithm. The benefit achieved by 
suppression of frequency aliasing could translate into some 
other corrupting artifact, for example, the increased noise 
floor of spectrogram as it is usually for the standard 
spectral estimation algorithms.  In this paper the advanced 
signal processing method will be discussed, which will 
provide high frequency and time resolution in a wide 
dynamic range of analysis. 

Typical Time-frequency representations 
 
 The classical method for analyzing non-stationary 
signals is short time Fourier transform (STFT). It was 
proposed by Gabor in 1946. STFT is based on the well 
known Fourier transformation 
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From (1) follows that signal )(tx  is integrated over 
all time. It means that one does not need to worry about 
time after transformation is applied.  There is no attention 
to when the signal components of different frequencies act. 
The basic idea of STFT is to introduce the time window, 
which is moved along the signal, and in such a way time 
indexed spectrum can be calculated: 
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 It is obvious from (2) that the time-frequency analysis 
result depends on time window )(tg  choice. Long time 
windows provide good frequency resolution, but poor time 
resolution. Short time windows provide good time 
resolution, but poor frequency resolution [4]. STFT for 
signals sampled nonuniformly at time instants kt  can be 
expressed as: 
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where summation involves the samples located within the 
selected time window with length gT . The basic drawback 
of STFT is its resolution limitation. It can be improved 
replacing Fourier transform with high-resolution spectral 
estimate techniques, for example, autoregressive (AR) 
modeling [1, 5].  
 The Wigner distribution (WD) has been employed as 
an alternative to overcome resolution drawback of the 
STFT [4]. WD in general is expressed as 

 τωτττω djtxtxtWx )exp()2()2(),( *∫ −−+= . (4) 

WD provides high-resolution representation in time and in 
frequency for monocomponent signals. However, if the 
signal consists of several subcomponents, additional 
interference or cross-terms appears [4, 6].  
 A discrete form of the WD can be expressed as 
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Note the necessity to know signal values at time instants 
kt+τ  and kt−τ  for all k that leads to the WD application 

only for uniformly sampled signals. Moreover, to avoid the 
distortion due to frequency aliasing, the signal )(tx  has to 
be sampled at twice the Nyquist frequency for real valued 
signal. 

To overcome the disadvantages of the cross-terms of 
the Wigner distribution and the resolution limitations of 
the STFT, the wavelet transform (WT) is an alternative [7]. 
The continuous wavelet transform of a signal )(tx  is 
defined as 

 ∫ 
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where a  is the scaling factor and )(th is the so-called 
analyzing wavelet. The time-frequency version is obtained 
by making the substitution ffa 0= . The analysis can be 
viewed as a filter bank comprising bandpass filters with 
bandwidths proportional to frequency. The multiresolution 
nature of wavelet analysis leads to some limitations. 
Wavelet transform techniques use a scaling profile such 
that frequency resolution decreases at high frequencies, 
while temporal resolution decreases at low frequencies.  
While this choice of scaling leads to nice mathematical 
structures and algorithms, there is no physical reason to 
assume that, it is contrary to natural structure behavior. In 
addition, the time- and scale-sampling grid should usually 
be considerably oversampled, in order to get the best 
performance of WT analysis. This oversampling introduces 
redundancy in the time-scale representation. 
 
Proposed time-frequency analysis approach 
 

The approach developed in this paper is based on the 
idea of keeping the valuable features of the above 
mentioned classical approaches and to minimize the impact 
of its drawbacks. Several authors consider a promising 
advancement of Wigner distribution, which allows the 
suppression of cross-terms and the improvement of 
resolution. The basic idea is to obtain a signal dependent 
kernel instead of simple kernel selection without any 
reference to signal features [8]. The approach featured here 
is based on a signal dependent transformation [9], which is 
used instead of windowed exponential functions in the 
expression  (3) for discrete STFT. In the general form the 
proposed transformation could be expressed as 
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where { })()( ωτ
ks  is a set of transformation functions for 

time moment of analysis τ . sT  is assumed as time 
interval of signal’s quasi-stationarity. From (7) it follows 
that the proposed transformation is applicable to arbitrarily 
distributed signal samples. The signal dependent 
transformation functions set is chosen in such a way that 
the nature of time-frequency representation corresponds to 
the nature of short time Fourier transform. In this case it is 

possible to reconstruct the signal from its time-frequency 
representation by inverse STFT. 
 The construction of { })()( ωτ

ks  is based on Minimum 
Variance (MV) filter idea to minimize variance of the 
selective filter output [5, 10]. The frequency response of 
such a filter adapts to the input signal on each frequency of 
interest. The variance of the output is Rss H=ρ , where s  
is vector of filter coefficients and R  is signal 
autocorrelation matrix. To guarantee that sinusoid with 
frequency 0ω  passes through the filter designed for this 
frequency without distortion the following condition have 
to be considered 

 1)( 0 =se ωH , (8) 

where )exp()( 00 ii tje ωω = . The coefficients s  under 
condition (8) can be calculated as 
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To obtain the whole time-frequency representation of 
the signal the calculation of coefficient vector (9) should 
be performed for each grid point ),( τω  of time-frequency 
representation. 
 
Simulation results 
 
 The performance of the proposed signal dependent 
time-frequency transformation has been compared with 
classical approaches. The 256 uniformly distributed 
(sampling period 1=T ) samples of test-signal have been 
used. The test-signal consists of two components: one is a 
rising chirp, which rises from middle frequency 
(normalized frequency - 0.3) to high frequency 
(normalized frequency - 0.45) and the second is a 
frequency modulated signal in low frequency region (sin 
modulation with period T128 , central frequency 0.125 and 
modulation range from 0.05 to 0.2 of normalized 
frequency): 

++= )))25615.0(3.0(2exp( nnjxn π  
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The trace of frequencies changes of test-signal along a time 
axis is shown in Fig.1.  

 
Fig. 1. Frequencies “trace” of test-signal 
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(a)            (b) 

 
(c) (d) 

Fig. 2. Time-frequency representations of test signal: (a) – STFT, (b) – Wigner distribution, (c) – Wavelet analysis, (d) – suggested 
signal dependent transformation 
 
 The time-frequency representations obtained by the 
proposed and three “classical” approaches are 
demonstrated in Fig.2. For STFT analysis a Hamming 
window with length of 81 samples is used. STFT (Fig.2a) 
clearly identifies both subcomponents of test-signal, but 
with low resolution. The pseudo (frequency smoothing 
Hamming window is used) Wigner distribution provides 
good resolution (Fig.2b), but significant cross-term appears 
in time-frequency representation additionally to the true 
test-signal components. The Fig.2c illustrates the limited 
temporal resolution of wavelet transform at low 
frequencies and limited frequency resolution at high 
frequencies.  The frequency axis in Fig.2c is not linear due 
to multiresolution nature of WT. 

The time-frequency representation obtained by 
suggested approach is shown in Fig.2d. It demonstrates 
high temporal and frequency resolution without cross-
terms. The used algorithm assumes the a priori knowledge 
of signal autocorrelation nature. In practice there is a 
possible case when some information about the signal 
autocorrelation characteristics is known, and a case when 
only signal samples are known. In the second case the 
obtaining of transformation functions can be managed by 
the iterative update of local autocorrelation matrix values. 
A procedure similar to the one which is described in 
literature [10, 11] can be exploited. The time-frequency 
representation obtained in such an iterative way is shown 
in Fig.3. 

 
Fig. 3. Time-frequency representation obtained by suggested 
approach with iterative updating of signal autocorrelation 
 

The beneficial features of the proposed method are 
kept. 
 
Discussion 
 

The main advantage of the proposed approach is the 
increased resolution in comparison with STFT. It is 
achieved by making the transformation kernel dependent 
on the instantaneous spectral characteristics of the signal. 
The developed analysis method has no problems with side-
loops and cross-terms. Simulation results have shown that 
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the proposed method provides narrow frequency peaks, 
permitting more precise frequency identification enhancing 
the ability to determine frequency changes at any time 
instant. The proposed method preserves the relative 
amplitudes of multicomponent signals thereby overcoming 
drawback of autoregressive model based methods [5]. 

The proposed time-frequency algorithm is developed 
for application to arbitrarily distributed signal samples. 
The benefit gained from that feature is the possibility to 
use sampling point flows with mean rate considerably 
below Nyquist.  The Fig.4 illustrates the time-frequency 
representation of test-signal in the case when only 64 
samples (one fourth of 256 samples used in Fig.2 is left in 
random way) are used for processing. The analysis is done 
on the same grid as in Fig.2. The shortage of samples 
influences the magnitudes of frequency peaks, while the 
resolution of representation and ability to determine 
precise frequency tracking remain.   

 
Fig. 4. Time-frequency representation obtained in the case of 
nonuniform sampling with density ¼ of Nyquist rate 
 

The similar nature of the result of the proposed 
transformation with the short time Fourier transform 
provides the simplicity of signal reconstruction – the 
inverse STFT can be used for that. 
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šio reikalavimo. Trumpalaikė Furje transformacija, laikinis-dažninis pasiskirstymas ir banginė transformacija – tai klasikiniai būdai 
naudojami nestacionarių signalų analizei. Tačiau jie turi ribotas pritaikymo galimybes, jei signalo diskretizavimo tankis yra mažesnis nei 
Naikvisto kriterijus. Laikinė-dažninė analizė paprastai tinka tiem siganlams, kurių momentinis juostos plotis yra gerokai mažesnis už 
analizuojamą juostos plotį. Siūlomas nestacionarių signalų apdorojimo pagerinimo būdas, kuris pagrįstas transformacijos funkcijų 
adaptacija momentiniam spektrui. Pagrindiniai šio metodo privalumai yra padidėjusi skiriamoji geba ir kintančio dikretizavimo 
panaudijimas, kai diskretizavimo tankis mažesnis už Naikvisto kriterijų. Il. 4, bibl. 11 (anglų kalba, santraukos lietuvių, anglų ir rusų k.). 
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this requirement. Short time Fourier transform, time-frequency distribution and wavelet transform are the classical approaches used to 
analyze nonstationary signals. However they have limited applicability if the signal sampling density is below Nyquist. Time-frequency 
analysis typically deals with signals, where the instantaneous bandwidth is considerably narrower than the bandwidth of analysis. The 
paper proposes an enhancement of non-stationary signal processing, which is based on the adaptation of transformation functions to 
instantaneous spectrum. The main advantages of the proposed approach are increased resolution, suppressed side-loops and cross-terms 
and applicability to nonuniform sampling with a sampling density less than the Nyquist rate. Ill. 4, bibl. 11 (in English, summaries in 
Lithuanian, English, Russian). 
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Для нестационарных сигналов полоса моментного спектра часто значительно уже, чем полоса анализа. Традиционно для 
анализа таких сигналов используют локальное преобразование Фурье, временное-частотное распределение и Вейвлет 
преобразование, но их возможности ограничены когда частота дискретизации сигнала меньше критерия Найквиста. Предложен 
подход улучшения обработки нестационарных сигналов, основанный на адаптации функции трансформации к моментному 
спектру. Ил. 4, библ. 11 (на английском языке; рефераты на литовском, английском и русском яз.). 


