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Introduction

Humans tried always to construct machines which are
capable to imitate their capabilities and their intellige-nce
in order to facilitate their life and dominated the world.
One of the privileged domains where they have to
demonstrate important performances is in systems control.

The classic control system is based on transfer fun-
ction mathematic description. This system reacts always
exactly in the same way when the same input is present,
giving the impression that it “looks” at the input for the
first time. It is incapable to “memorize” and to
“remember” its previous comportment. This behavior
doesn’t allow relating any kind of “intellige-nce” to the
classic control system. For control purpo-ses it is obvious
the necessity and usefulness of systems which are able to
“remember” and react in ac-cordance with acquired
experience from their past. In other words, control systems
capable to anticipate, even weakly. Ability which allows to
speak for a first order of intelligence in the system.

In this direction there are two main approaches:

1. the neural networks [1-3] and

2. the fuzzy logic [4] based control systems.
This paper discusses the neural network approach.

One of the recent Neural Network applications is in
the control domain. Their approximation capabilities of
Multilayer Perceptron (MLP) made them a popular choice
for modeling nonlinear systems and for imple-menting
general — purpose nonlinear controllers. For this purpose,
different control algorithms and archite-ctures, with special
capabilities, are implemented in solving the nonlinearity
problems. In any Neural Net-work control algorithm, the
essential difference from the classic control is based on the
effect that a model of the plant, under control, is created, in
order to describe, by prediction, its dynamic future
behavior. This gives to the process control the knowledge
of the system’s expected comportment in possible inputs.
This characteristic gives the system an “intelligence”
dimension, as it arms with anticipation -capabilities,
rending it more efficient, with better performances.

Anticipation

From the philosophical point of view, there are dif-
ferent approaches for the term anticipation. The Greek phi-
losophy, Stoicians and Epicurians, appoint as anticipation
the relation between universal and particular, or in other
terms, is the capacity of human mind to posses and use
abstract ideas, before the immediate perception of the ob-
Jject and is referred to the possibility of extrapolating from
universal to particular [12].

Robert Rosen [6], gives a definition more closely to the
contemporary technical point of view. According to this
definition: “an anticipatory system is a system containing a
predictive model of itself and/of its environment which
allows it to change state at an instant in accord with the
model’s predictions pertaining to a later instant”. The
formulation of this description is viewed with simplicity in
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Fig. 1. The anticipatory system

Robert Rosen conjectures that adaptation and learning
systems in biological processes are anticipatory systems
and anticipation is the main difference between living and
non-living systems. He states that the evolution of an an-
ticipatory system S(z), at each time step, is driven by the
predictive model M(t+1) at a later time, and that the pre-
dictive model is not affected by the system. Thus, with this



statement, a finite difference equation system can be writ-
ten as:

AS/ At =[S(e+ Ar)-S(t))/ Ar = F[S(e) M (e +Ac)]; (1)

@

Daniel Dubois’s interpretation of anticipatory system
is quit different of that of Robert Rosen and wands model
evolution to be a function of itself as well as of the system
[7]. With Dubois interpretation the finite difference equa-
tion system becomes:

AM /At =[M(t+Ac)-M(2))/ Ar = G[m(¢)].

AS/Ar =[S(t+At)-SE))/ At = F[SE) M+ ar)];  (B)
AM | At = [M (e +At)— M ()] At = G[S(e), M (¢ + Ar)] . (4)

Further more, Daniel Dubois makes a distinction be-
tween strong and weak anticipation. A weak anticipatory
system computes its future states, as function of its states at
past times, present time, and predicted —by model-future
times, according to equation:

)

X(e+1)= F-, X (e =1), x(e = 1), x(e), (e +1),M (¢ +2),---, p]»

where p denotes a control parameter

A strong anticipatory system computes its next state,
as function of its states at past times, present time, and
even its states at future times, according to equation:

(6)

X(e+1)= Fl-, X = 1), x(e 1), X(e), X (e +1), X (¢ +2)- p]

where: p denotes a control parameter

In strong anticipation those future states, are com-
puted in using the equation itself, and the system becomes
self-referential in computing its future states from itself
and not from a model based prediction.

Following to this short description of anticipation, the
three main Neural Network Control algorithms will be
described.

Neural Network Predictive Control

The neural network predictive controller, as all other
algorithms presented in this work, uses two steps to realize
the control procedure:

1. In order to identify the plant behavior a neural network
model of a nonlinear plant, to predict future plant re-
sponse, is created.

In the control stage, the model is used to train the con-
troller and the control input, that will optimize system
performance over a specified future time horizon, is
calculated [8]. In the plant identification phase the con-
troller trains the neural network plant model in order to
acquire the forward dynamics of the plant. For the
training process the prediction error is used as input to
the learning algorithm (Fig. 2).

The neural network plant model uses the plant previ-
ous inputs and outputs to predict future values of the plant
response, over a specified time horizon, and these predic-
tions are used, by a numerical optimization program, to
determine the control signal that minimizes a performance
criterion J over the specified horizon.

N ]VU " '
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where: N;, N, N,: define the horizons over which the
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tracking error and the control increments are evaluated; u -
the tentative control signal; y, - the desired response; y,, -
the model response; p - u' contribution on performance
index.
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Fig. 2. System identification

The system block diagram becomes as in Fig. 3.
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Fig. 3. NN Predictive Controller
NARMA L2 Control

The principal idea of NARMA-L2 (Nonlinear Auto-
regressive — Moving Average) controller is to transform
nonlinear system dynamics into linear, by canceling the
nonlinearities.

The model used for the plant implementation is de-
scribed as:

y(k + d) = N[y(k),y(k - 1),~--,y(k —-n+ 1),u(k),u(k - l),u -u(k —-n+ 1)] .(8)

where u(k),y(k) - the system input and output respectively.
The Neural Network training, during the identifica-
tion phase, is realised in order to approximate the nonlinear
function N.
If the system follows a desired reference trajectory y,
then the nonlinear controller must be of the form:

ulle) = Gly(k), ylk = 1)+, (e = 1+ 1), 3, (k + d )l = 1),k = m +1)] - (9)

The Neural Network training (minimisation of Mean
Square Error) is to create the G function of the controller
[9].

The NARMA-L2 controller approximate model is in
companion form [10]:



Wi+ d)= 1Tk =1y vl =+ Dtk = Dol = m + 1]+

+g[y(k),y(k—1),-~~,y(k—n+1),u(k—1),~~u(k—m+1)]u(k). (10)
where, the next controller input u(k) is not contained in the
nonlinearity.

The resolving controller input has the form:

(k)= v+ d)= (k) p(k=1)-, ylk—n+ D) u(k=1)--u(k—m+1)] (11)
Sy k=1 k=t Doaalk 1) ulk —n+1)]

For realisation problems of this equation (control
input u(?) calculation is based on the same time output
y(k)) is more realistic to use instead the following equa-
tions:

ke +d)= fyli) yle 1),
+ gk ) (k= n+1) (k) ulk —n+ 1)k +1);(12)

yk = n+ D, e(k =1),--ull —m +1)]+

ulk + :y,(k+d)ff[y(k),-~-,y(k7n+1),u(k),-~-u(k7n+1)]_ 13
(k 1) g[y(k),---,y(k—11+1),u(k),---u(k—n+l)] (1)

where d>2.

The NARMA-L2 controller, which realises this func-
tion, is shown in Fig. 4.
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Fig. 4. NARMA-L2 controller
Model Reference Control

The Model Reference architecture requires, in addi-
tion of previous architectures, a separate neural network
controller. The plant model identification takes place first
and then the controller is trained, so that the plant output
follows the reference model output. The block diagram of
the all process is presented in Fig. 5.
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Experimental data are presented in [11].
Conclusions

The insertion of Neural Networks in classic control
introduces the anticipatory aspect in control and dedicates
a new, more efficient, approach in control systems, as it is
shown from the typical system responses. This approach
has a different logic and philosophy from classic control
methods and renders the system more “intelligent”. For
more complex evolutionary dynamic systems, it constitutes
a modern control tool strongly anticipatory, if the dialog
possibility exists between plant and model, in order to up-
date the last one about plant evolution. This autoanticipa-
tion aspect opens a new horizon in control engineering.
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G. Tsirigotis, D. Bandekas, D. Pogaridis, J. L. Lazaro. Prognozuojami neuroniniy tinkly kontrolés biidai / Elektronika ir elek-
trotechnika. — Kaunas: Technologija, 2005. — Nr. 2(58). — P. 10-13.

Prognozuojami biidai, kaip pagrindinés auksto intelekto sistemy charakteristikos, jvedamos | kontrolés sistema neuroniniy tinkly
kontroleriais, suteikia tai sistemai ,,intelekta®, ir ji tampa pajégi ,,atsiminti“ ankstesng elgseng bei véliau panaudoti ja kontrolés algoritme
tinkamam kontrolés signalui nustatyti. Neuroniniy tinkly kontrolés prognozavimas yra pagristas daugiasluoksnio perceptrono prognoza-
vimo galimybémis. Toks perceptronas, naudojamas gamyklinio modelio konstrukcijoje, yra pagrindinis kontrolés proceso elementas.
I$nagrinéti neuroniniy tinkly prognozavimo buidai, pagristi kitokios strukttiros kontroleriu, ir lyginami klasikinés ir neuroniniy tinkly
kontrolés rezultatai. I1. 5, bibl. 11 (angly kalba; santraukos lietuviy, angly ir rusy k.).

G. Tsirigotis, D. Bandekas, D. Pogaridis, J. L. Lazaro. The Anticipatory Aspect in Neural Network Control // Electronics and
Electrical Engineering. — Kaunas: Technologija, 2005. — No. 2(58). — P. 10-13.

The anticipatory aspect, essentially characteristic of high level intelligence systems, introduced in control systems by Neural Net-
work controllers, gives an “intelligence” to the control system, as it becomes able to “remember” its past behaviour and use it afterwards
in control algorithm in order to establish the appropriate control signal. Anticipation, in Neural Network control, is based in prediction
capabilities of Multi Layer Perceptron, used in plant model construction, essential element of control process. In this work, the anticipa-
tory aspect in Neural Network, different kind, controller’s structure is examined, and comparison between classic and Neural Network
control is made. IlI. 5, bibl. 11 (in English; summaries in Lithuanian, English and Russian).

I'. Tcupuroruc, /I. Bananexac, /1. llorapuauc, X.J1. Jlazapo. IIpodjieMbl KOHTPOJs1 HEl{POHHBIX ceTeil // DIeKTPOHUKA U JJeK-
TpoTexHuka. — Kaynac: Texnomnorus, 2005. — Ne 2(58). — C. 10-13.

AHanm3uUpyrOTCs CIIOCOOB! MTPOrHO3UPOBAaHMS KOHTPOJISI HEHPOHHBIX cereil. [Ipeanaraercs B cucteMy KOHTPOJIS BBECTH «MHTEIICK-
TyaJbHbIC XapaKTEPHCTHKU», KOTOPbIE OTPA)KatOT OCHOBHBIE MTapaMeTpbl COBPEMEHHBIX ceTeil. ' T1aBHOM 3afaueil Takoro KOHTPOIs sB-
JISIETCSI BBOJ| BBICOKMX MHTEIUICKTYaIbHBIX CBOMCTB CHCTEM. B KadecTBe OCHOBHOIO 3JIEMEHTA IPOrHO3a KOHTPOJISL UCTIONB3YETCS MHO-
rocioiHbIi neprenTpoH. CpaBHUBAIOTCS PE3yJIbTAaThl KJIACCHYECKOr0 KOHTPOJI M MPEAIaraéMoro MHTEIEKTYalbHOTO MEepIEnTPpoHa
IIPU OLIGHKE Ka4yecTBa HEHPOHHBIX cered. M. 5, 6ubn. 11 (Ha aHrmmMiickoM si3bIke; pedepaTbl Ha JIUTOBCKOM, aHIVIMICKOM M PYCCKOM
s13.).
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