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Introduction 

 
Considerable attention has been focused on the design 

of optimal quantizers for sources encountered in image, 
speech, and other compression applications. Sources 
having exponential and Laplacian probability density 
function are commonly in use [1] and the methods for 
designing quantizers for these sources are very similar. The 
problem of determining maximal amplitude of the input 
signal e.g. problem of determining granular region, which 
is very important and was considered in [2] and [3], is 
obviated using the logic presented in this paper. The 
method that is the most commonly in use for construction 
of scalar quantizers is Lloyd-Max’s method. The problem 
of finding the sets of optimum parameters in [4] is settled 
by introducing the Lambert W function and some 
approximations. Approximation method suggested in this 
paper is simpler than well known Lloyd-Max’s method [5]. 
Therefore, in this paper the goal is to evaluate the 
necessary parameters for construction of scalar quantizers 
for exponential sources on the most easily way. First of all 
we consider scalar quantization, in which each input 
random variable is separately mapped to its output 
approximation. After that we focalize on scalar quantizers 
for exponential sources. We suggest one very fast and 
simple approximation method for solving transcendental 
equations. This method enables obtaining nearly accurate 
parameter’s values which are necessary for designing of 
scalar quantizers. 
 
Scalar quantization 

 
Consider an input random variable x  having a 

probability density function (pdf) ( )xf  which is greater 
than zero over (0, ∞) and zero elsewhere. First, we 
consider only a one-sided pdf for convenience, without 
loss of generality to the similar problem posed for other 
regions of support. Let an n -level quantizer )()( ⋅nQ  be 
defined in terms of a set of 1−n  positive step sizes 
{ } 1

1
−
=

n
iiα  (defining ∞=0α ) and a set of n  nonnegative 

distances from the representative levels to the nether 
decision thresholds { } 1

0
−
=

n
iiδ  as shown in Fig. 1. and Fig. 2. 

Let 1+n  decision thresholds of the quantizer { }n
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 The n -level scalar quantizer )()( ⋅nQ  is defined as a 
functional mapping of an input value 0>x  onto an 
output representation )()( xQ n , such that 
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 Note that the i index subscript decreases to the right 
of the zero-input location, and that the quantizer is defined 
in terms of its step sizes { } 1

1
−
=

n
iiα  and the distances from 

the representative levels to the nether decision 
thresholds{ } 1

0
−
=

n
iiδ  rather then the most common 

convention using the threshold { }n
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 The quantizer distortion is given by 
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 The most commonly used distortion measure is 
mean-square error (MSE), denoted here by ( )∆msed  and 
given by: 
 ( ) 2∆=∆msed  (5) 

and in that case [4] optimal values of the distances from 
the representative levels to the nether decision thresholds 
are given by: 
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 A second necessary condition for optimality [4] can 
be given by 

 ( ) ( )( ) ( ) ( )( )n
ii

n
iii pdpd 2121

*
1 loglog λδλδα −−=−− +++ . (7) 

 In this paper we consider case 0=λ  thereby (7) 
becomes: 

 ( ) ( )iii dd δδα −=− ++ 1
*

1 . (8) 
 

Exponential source 
 

Let we consider the exponential source with 
memoryless property. Namely, x  is an exponentially 
distributed random variable and has a value exceeding 
some fixed nonnegative threshold t . Regarding to the 
memoryless property of this exponential source the 
conditional pdf of  tx −  is the same as the pdf of the 
original random variable x  and can be expressed by 

 ( ) ,1 µµ
x

e exf
−−=    0,0 >> µx . (9) 

 Without loss of generality we can assume that µ=1 
and (9) becomes: 

 ( ) x
e exf −= . (10)

 
 Using (10) the memoryless property of the 
exponential pdf allows the substitution:
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 By substituting (11) in (6), the expression for 
determining optimal values of the distances from the 
representative levels to the nether decision thresholds as a 
function of the step sizes iα  is derived as 
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 The optimal values of the distances from the 
representative levels to the nether decision thresholds are 
obtained for the optimal values of the step sizes *

iα , thus 
from (12) we have: 
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and from (8) 
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 If we use mean-square error distortion measure then 
from (14) and (5) follows 
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 Substituting (13) in (15) and using a simple set of 
mathematical operations the transcendental equation is 
obtained (16): 
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 By solving equation (16) it is possible to determine 
optimal values of the step sizes *

1+iα  as a function of 
optimal values of the previous step sizes *

iα . Thus, 
knowing the *

iα  may be sufficient to determine *
1+iα . 

 
Numerical results 

 
As in [4], in this paper is also considered 

transcendental equations solving problem for 0=λ  and is 
settled by introducing the Lambert W function and some 
approximations. 

We suggested more efficiently solution of this 
problem. The solutions of transcendental equations which 
are iteratively found are the exact solutions. In the way to 
easily find solutions which are nearly to the exact solutions 
than it was done in [4], we suggest approximation method 
for solving transcendental equations and therefore we 
introduce the following approximation: 

 00 )( 0
xxx exxee −−− −−≈ . (17) 

 By introducing this approximation the solving of 
transcendental equations are replaced with solving of linear 
equations. 
 Analyzing an Eq. (13) we can make two predictions 
( ) 1*

1 <αδ  and ( )*
1

*
1 αδα −  which is a little bit greater 

than ( )*
1αδ . Therefore, if initial value is 2*

1 ≈α  the 
mistake won’t be large.  
 Choosing the better initial value causes faster and 
more accurate getting of the final solutions. It is very 
important to notice that the representative levels )( n

iy are 
not obtained as an arithmetical mean of the decision 
thresholds which determine the quantization levels. 
 Assuming the ∞=*

0α , ( ) 1*
0 =αδ ,  2*

0,1 ≈α  and 
using 
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from an Eq.(16) it is easy to  calculate *
1α  and that value 

we mark as  ( )1*
1α . After the substitution *

0,1α  with ( )1*
1α  

in (18) and also in (16) the new value for *
1α  is obtained 

and that value is a final value. Procedure of determining 
subsequent values of the step sizes *

iα ni ,...,1=  

identically repeats as it is shown for *
1α .  
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Table 1. Parallel comparison of the accurate optimal values of 
the step sizes, for scalar quantizers with n=4 levels, with 
appropriate optimal values of the step sizes obtained by using the 
approximation method 
 

Accurate optimal values  
of the step sizes 

Optimal values of the 
step sizes obtained by 
using the approximation  
method 

α0
*=∞ α0

*=∞ 

α1
*=1.5936 α1

*=1.5940 

α2
*=1.0175 α2

*=1.0230 

α3
*=0.7539 α3

*=0.7583 

 
 

 Behaviors of the four levels MSE-optimal scalar 
quantizer for exponential source are shown in Fig.1. and 
Fig.2. The values of the step sizes *

iα ni ,...,1=  on Fig.1. 
are obtained iteratively, by solving the transcedental 
equations, while the values of the step 
sizes *

iα ni ,...,1= on Fig.2. are obtained using suggested 
approximation method. From Fig.1., Fig.2. and Table.1. 
and Table.2. it is possible to notice that the appropriate 
values of *

iα ni ,...,1= , and also the appropriate values 
of *

iδ ni ,...,1=  are almost identical. 
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Fig.1. Behavior of the four levels MSE-optimal scalar quantizer 
for exponential source  
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Fig.2. Behavior of the four levels MSE-optimal scalar quantizer 
for exponential source and using the approximation method  
 
 
Table 2. Parallel comparison of the accurate optimal values of 
the distances from the representative levels to the nether decision 
thresholds, for scalar quantizers with n=4 levels, with appropriate 
optimal values of the distances from the representative levels to 
the nether decision thresholds obtained by using the 
approximation  method 
 

Accurate optimal values  
of distances from the 
representative levels to the 
nether decision thresholds  

Optimal values of the 
distances from the 
representative levels to the 
nether decision thresholds 
obtained by using the 
approximation  method  

δ0
*=1 δ0

*=1 

δ1
*=0.5936 δ1

*=0.5937 

δ2
*=0.4239 δ2

*=0.4257 

δ3
*=0.33 δ3

*=0.3316 

 
 
Conclusion 

 
Logic, presented in this paper enables obviating the 

problem of determining maximal amplitude of the input 
signal e.g. problem of determining granular region, which 
is very important and was considered in [3] and [4]. The 
exact solution of the transcendental equations are obtained 
using the iteratively method but using the approximation 
method for finding for solutions we could, on very fast and 
simply way, get the solutions very close to the exact 
solutions. In this paper is also shown equation for finding 
distances from the representative levels to the nether 
decision thresholds as a function of the step sizes. 
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Предлагаются два метода для выбора оптимальных параметров. Один основан на итеративной процедуре, другой, 
предлагаемый нами, является методом аппроксимации и используется для решения трансцедентальных уравнений. Этот метод 
может быть использован для быстрого и простого решения, близкого к точному решению. Ил. 2, библ. 5 (на английском языке; 
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