
 69

ELECTRONICS AND ELECTRICAL ENGINEERING
ISSN 1392 – 1215 –– 2007. No. 1(73)

ELEKTRONIKA IR ELEKTROTECHNIKA

MEDICINE TECHNOLOGY
T 115 –––––––––––––––––––––––––––––

MEDICINOS TECHNOLOGIJA

Improving the Performance of Program Package for 3D Simulation of
Low Frequency Magnetic Field in Medical Therapy

D. Tz. Dimitrov
Faculty of Communication Technique and Technologies, Technical University of Sofia,
8, Kliment Ohridsky str. 1000 Sofia, Bulgaria, tel.: +359 2 9652278, e-mail:dcd@tu-sofia.bg

Introduction

The purpose of the article is to cover some aspects of
the implementation of the program for a 3D simulation of a
low frequency magnetic field. This simulation is required
for an efficient design of apparatuses for magnetotherapy
in medicine, as far as the computer-aided analysis of
magnetic field distribution becomes the most effective way
for evaluating such electromagnetic devices and their
component’s performance. The field simulation requires
input of the current in the coils , parameters of the coils,
their space disposition, some conditions, a lot of
calculations and output of the desired parameters [1–2].

A typical cycle of the proposed simulation program
includes the following steps: entering the parameters of the
field sources and their geometry (relative positions) as well
as the points, surface or volume of interest; calculating the
magnetic induction in each point; visualizing the results in
different ways. If the results are found unsatisfactory, the
design is modified and the magnetic induction vector data
is recalculated. These steps are repeated until the desired
results are obtained. The factors that influence the
effectiveness of the described process are the ease of use,
the accuracy of results, and the speed of the program.

The method for a magnetic induction calculation used
in the presented program solution is specific, because it
concerns the particular case of low frequency magnetic
field with an axisymetry generated by a circular current
contour. Other methods such as FEM and BEM are much
more universal, but they require more time for calculations
[3–4]. The applied method provides a good precision and
permits the parameters (magnetic induction vector) to be
calculated in every 3-dimensional point of interest. The
goal of the program is to perform the calculation method
multiple times for different sets of points. The sets of
points can be generated as a result of analytical description
as well as selected by the user, or entered by keyboard [5].
After calculating the magnetic induction for every point of
the set, the information was saved for subsequent analysis
and visualization. As a result of the analysis and the
visualization the user can follow:

• the behavior of the field as a function of the
current and contour radius;

• the behavior of the resultant field, generated of
separate contours, as a function of the number of
contours and their relative positions;

• the influence of the low frequency magnetic field
on the human body represented as a geometric
model.

3D simulation of magnetic field includes as its
obligatory pan support for the fastest possible visualization
of the vector field. The vector fields are characterized with
a n-component vector (3D coordinates, components of the
magnetic induction, color information) in each point of the
field. This vector data tends to grow when the number of
points grows and it raises the question about the structure
and content of the data and the way of its preparation and
processing [6]. The requirement for dynamic change in the
number and position of field sources and parameters of the
sources leads to frequent changes in number and
configuration of the set of points of interest. Depending on
the chosen visualization technique (numerical data,
vectors, field lines, surfaces) additional calculations and
analysis of the vector data will take place.

Choosing of the most suitable technology for the
application

From the implementation point of view the presented
software solution uses the advantages of the object
oriented and component oriented approaches that are
inherent to the chosen programming language C# and
development environment .NET.

.NET Framework supports three core technologies for
developing applications: Windows Forms, ASP .NET Web
Forms and XML Web services. The choice of technology
depends on the characteristics of the particular software
solution and the requirements of the end users.

Because the 3-dimensional simulation of magnetic
field requires a great deal of calculations, high quality
color graphics and highly interactive user interface, the
best suited technology is Windows Forms. Windows

 70

Forms are used to develop classic Microsoft Win32
desktop applications in which the desktop computer
handles all of the application processing: calculations and
data visualization. The main advantage of this technology
is the responsiveness. In the presented software solution
the 3-dimensional vector data is encapsulated into two
connected classes. The first class named magneticVector
contains member data that match the components of the
magnetic induction vector and the properties needed for
setting and obtaining member data values. The second
class named vector Data provides a wrapper for an Array
List of magnetic induction vectors and includes the
necessary methods and properties for accessing data
members. Most of the computational methods of the
solution are implemented as instance methods of the
separate class named calculate.

All mentioned classes are combined into a single
namespace named calculate Component and are
encapsulated into a single component with the same name.
The component is separately compiled to an intermediate
(MSIL) code and stored as a *.dll file. The file consists of
a single self-explanatory assembly with embedded
metadata that provides all the information required for a
software component interaction. In the presented software
solution the methods and properties exposed by the
component, are called by the simple Windows Forms client
application. The main responsibilities of the client are to
supply a flexible and highly interactive user interface and
thus to allow the users easily to change the configuration
as well as the parameters and to see the graphical or
numerical results as quickly as possible.

The components, developed using C#, are the basic
approach to create reusable classes. Thus the fields,
properties and methods, once defined into the component,
can be used by different kind of applications - not only
desktop applications, but also ASP .NET applications,
without any changes in the contents (code) of the
components. Using components by ASP .NET client wiil
avoid the problem with the necessity of .NET Framework
running on the client computer, which is the strong
requirement of the Windows Forms applications, but ASP
NET applications are out of the scope of this article.

Achieving Better Application Performance

As stated above, methods and properties exposed by
the component are called from the Windows Forms client,
which supports flexible and highly interactive user
interface. In order to guarantee high responsiveness of the
application and to prevent the blocking of the user
interface for long periods of time the client is realized as a
multithread application. In such a way the user can
continue his work on the main thread reviewing or
visualizing already prepared data, while on another thread
computational methods called asynchronously calculate
and populate different dataset..NET Framework provides a
rich support (System.Threading namespace) that greatly
simplifies working with multithread applications. In
addition because the asynchronous programming is a core
concept, the .NET Framework provides a common design
pattern to handling asynchronous execution (IAsyncResult
interface and asynchronous delegate classes), that enables

a programmer to avoid some of the implementation details
of threading. In the presented program solution most of the
computational methods encapsulated into the component
calculate Component are implemented in such a way to
provide both synchronous and asynchronous calls.

.NET Framework Class Library provides classes with
build-in asynchronous support (for example File I/O, ASP
.NET pages). Such classes have a pair of asynchronous
methods for each synchronous method they contain.
Unfortunately, classes into the calculateComponent are
user classes and therefore have no build-in asynchronous
support. The developer can still make asynchronous calls
to each synchronous method, but some additional steps are
required. During this steps must be used the mechanism of
the asynchronous delegates, to guarantee that the
behaviour of the user classes will correspond to the .NET
Framework asynchronous design pattern.

One of the goals of this article is to formalize and
explain the procedure for creating and using methods that
support both synchronous and asynchronous calls. For
illustration purposes the method calculate B vector() is
used from the class calculate of the name space
calculateComponent as shown below:

{
class calculate
void calculateBVector(IEnumrable list)
{ // code of the method......... }
//other methods of the class
public delegate void
calculateBVectorDelegate(IEnumerable list);
//*************
}
//other classes
} // end of the namespace

The first step of the procedure is to explicitly declare
a delegate for a method calculateBVector() (the statement
commented with an '*'s in the above code).
Note that the delegate must have the same signature as the
target method. Such a delegate must be declared for each
method that must support asynchronous calls and is an
instance or static method of a class with no build-in
asynchronous support.

When the delegate that references calculateBVector()
method is declared, the C# compiler generates the Invoke
method together with the Beginlnvoke and EndInvoke
methods for the target calculateBVectors() method.

Invoke method has to be used when a synchronous
call of the target method is needed. BeginInvoke and
EndInvoke methods are related to the asynchronous call of
the same target method. After declaring all needed
delegates calculate Component can be compiled to a .dll
and supplied to the Windows Forms client or ASP NET
client.

All other programming actions concern the code of
the Windows Forms client only.

The second step in the procedure is to choose the
completion mechanism. The most appropriate for
Windows Forms applications completion mechanism is the
callback method. The callback method is called
automatically by .NET Framework when the asynchronous
operation is completed and must have the following
signature: void method(IASyncResult obj);

 71

Inside the callback function the EndInvoke method
for the target method must be explicitly called to retrieve
the results of the asynchronous operation. Next, the
callback method is responsible for returning to the main
thread and updating the user interface. Updating user
interface is a mechanism for synchronization preferred in
the Windows Form applications and requires a separate
function to be defined with the following signature: void
method(); .

The code of this function usually changes the
properties Enabled and Text of the Windows Form controls
and thus alters both the appearance and the behavior of the
controls.

The best suited place to define both functions
(callback function and function that updates UI elements)
is the Windows Form, from which the asynchronous call is
made. The requirement for special signature of these two
functions is obligatory, because they are called through the
delegates. The developer should not explicitly create
delegates that reference these methods because the .NET
Framework supports needed delegate classes
AsyncCallback and MethodInvoke.

The contents of these two functions is as follow:

public void updateButtonAppearance()
{
//changes the property Eenabled of the button,
named calculate Field
this. calculateField. Enabled = true;
}
public void calculateBVectorCallback(lAsyncResult
obj}
{
//create an object of the delegate class
calculateBVectorDelegate
calculate.calculateBVectorDelegate a;
// initialize the object
a = (calculate.
calculateBVectorDelegate)((AsyncResult)obj).Async
Delegate;
//call the Endlnvoke method for the target method
calculate ВVector()
a.Endlnvoke(obj);
//return to the main thread
//create an object of the .NBT Framework delegate
class Methodlnvoker that
//refferes to the updateUI function
MethodInvoker upd = new
Methodinvoker(updateButtonAppearance),
//call asynchronously the function
updateBiittonAppearance() to return control to
the
//main thread and change the appearance of the
Form's controls
this.BeginInvoke(upd);
}

The last and simplest step in the procedure is to
asynchronously call the target method calculateBVector()
inside the handler for the event button _CIick of the button
named calculateField, as shown below:

private void calculateField_Click(object sender,
System.EventArgs e)
}
//create an object of class calculate that
contains ihe target method calculateBVector()
calculate с = new calculate();
//create an object of class vectorData that
contains the defines the data to be processed
vectorData list = new vectorData();

//create an object of the .NET Framework delegate
class AsyncCallback that reffers to the
//callback function
AsyncCalLBack callback = new
AsyncCallback(this.calculateBVectorCallback);
this. calcuiateField.Enabled = false;
//call target method calculateBVector()
asynchronously
IAsyncResult obj = c.BeginInvoke(list, callback,
null);
}

When the BeginInvoke method was called it calls the
target method calculateBVector() on a separate thread from
the runtime's thread pool and returns immediately to the
caller. The main thread, which made the asynchronous call
is free to continue execution in the parallel to the target
method which is running on a thread pool thread.

On the completion of the asynchronous operation the
callback fianction is automatically called by the .NET
Framework. In turn, the callback function calls EndInvoke
method for the target method calculateBVector() and
obtains the results. Finally the user is notified for the
completion of the asynchronous operation through the
updated UI: the appearance of the button calculate Field is
changed.

Before updating to take place the callback function
returns control to the main thread using the MethodInvoke
delegate; the thread in which the calculateBVector()
method runs asynchronously returns to the thread pool.
The switch of control between threads is needed because
Windows Form controls can only be safely called from the
main thread.

Conclusions

The current paper illustrates the procedure for
implementing the .NET Framework asynchronous
programming model using only one of the computational
methods as an example. All the methods in the program
solution that are time consuming and play a key role in the
computation and visualization process are implemented in
such a way to permit asynchronous calls.

On the base of the created component without any
changes in its code an ASP .NET client application was
developed too. This application till now implements only
small part of the functionality of the presented Windows
Forms application. Its goal is to demonstrate how the
change of the technology can satisfy different user
requirements with minimal or no code changes.

References

1. Brandinsky K., Georgiev G., Mladenov V., Stancheva R.

Elektrotechics, part 1. – Sofia, 2005. – P.368.
2. Foley J. D., A. van Dam, S. Feiner, J. Hughes. Computer

Graphics: Principles and Practice. – Addison-Wesley,
Reading. – MA, 1990. – P. 518.

3. Hearn D., Baker M. P. Computer Graphics. – Prentice-
Hall, NJ. – 1997. – P. 370.

4. Тодорова В., Малешков Ст. Geometric Data Exchange
in XML format Using .NET Environment // Proceedings of
International Conference “Computer Science '2004”. –
Technical University of Sofia, Bulgaria, 2004. – P. 68–74.

 72

5. Loop Ch. Triangle Mesh Subdivision with Bounded
Curvature and the Convex Hull Property // Proceedings of
International Conference, ICEST 2006. – Technical
University of Sofia, July 1–2, 2006. – P. 134–139.

6. Feiner S., Hughes J. Applications for Windows with
Visual C# .NET. – Addison-Wesley-Reading, MA, 1998. –
P. 240.

Submitted for publication 2006 10 01

D. Tz. Dimitrov, Improving the Performance of Program Package for 3D Simulation of Low Frequency Magnetic Field in
Medical Therapy // Electronics and Electrical Engineering. – Kaunas: Technologija, 2007. – No. 1(72). – P. 69–72.

The purpose of this article is to present one particular application of the new .NET technologies: Windows Forms and asynchronous
programming model. These technologies are used in the development of the software solution tor 3-dimensional simulation of low
frequency magnetic field. The simulation requires preparation and processing of the 3-dimensional vector data which is a time
consuming task and thus requires special cares for optimizing both the user interface and the organization of the calculations. Bibl. 6 (in
English; summaries in English, Russian and Lithuanian).

Д. Ц. Димитров. Улучшение действия программ для 3D моделирования низкочастотного магнитного поля в
медицинской терапии // Электроника и электротехника. – Каунас: Технология, 2007. – № 1(73). – С. 69–72.

Цель статьи – демонстрирование одного особого применения новой технологии .NET: Windows Forms и асинхронной
программной модели. Этой технологией пользуются в процессе развития программ компьютерного 3D моделирования
низкочастотного магнитного поля. Данное моделирование требует подготовления 3D вектора данных. Этот вектор со своей
стороны требует запаса времени, который необходим для процесса вычислений и для организации потребительского
интерфейса. Библ. 6 (на английском языке; рефераты на английском, русском и литовском яз.).

D. Tz. Dimitrov. Programų paketo, skirto medicininės terapijos žemųjų dažnių magnetiniam laukui 3D modeliuoti, veikimo
pagerinimas // Elektronika ir elektrotechnika. – Kaunas: Technologija, 2007. – Nr. 1(73). – P. 69–72.

Straipsnio tikslas – parodyti, kaip naudojama nauja .NET technologija – Windows Forms ir asinchroninio programavimo modelis.
Šios technologijos panaudotos žemųjų dažnių magnetinio lauko 3D kompiuteriniam modeliavimui tobulinti. Tokiam modeliavimui
reikia paruošti ir apdoroti trijų matmenų duomenų vektorių. Šioms operacijoms gaištamas laikas, todėl svarbu optimizuoti tiek vartotojo
sąsają, tiek skaičiavimo algoritmus. Bibl. 6 (anglų kalba; santraukos anglų, rusų ir lietuvių k.).

