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Introduction

The aim of “Blind Source Separation” (BSS) isto re-
cover mutually independent unknown source signals only
from observations obtained through an unknown linear
mixture system. Given observation matrix
X= [X(l),-~- ,X(N)]e C™N the general linear instan-
taneous mixing signal model is

X=AS+V, D

where N is the number of available samples, M denoting
the number of observations (output dimension), K denoting
the number of sources (input  dimension),

S= [S(l), ,S(N)]e C*N' contains the corresponding
latent (hidden) components which represent unknown

source signals, A e MK represents the unknown
mixing matrix describing the input-output relation and
V e C™™ is amatrix of additive noises which are mutu-
aly uncorrelated and are also uncorrelated with the sour-
ces. The goal is therefore to estimate both unknowns ( A
and S) from the measurements X and in principle all
thereisto do isto invert the mixing process
S=WX, 2
where W = A™ is caled the separating matrix. The ge-
neral BSS problem requires A to be an M x K matrix
of full rank, with M > K (i.e. there are at least as many
mixtures as independent sources). In most algorithmic
derivations, an equal number of sources and sensors is
assumed. As resolutions of the problem, many methods
have been proposed (see [1] for instance). The approximate
joint diagonalization of a set of real m-square symmetrical

correlation matrices (second-order statistics) is an essential
tool in blind source separation algorithms [2], [3]. Given a

matrix st M={M,,M,,---, M},
M, e CNN 1<k <K, the approximate joint diago-
nalization problem seeks a nonsingular diagonalizing
matrix W € CV*™N and K associated diagonal matrix

where
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ALA, - Ay e CN™ (which are usualy not of
interest in the context of BBS) such that the following

common structures are best fitted:

M,=WAWT", 1<k<K. )

The “goodness of fit” is evaluated by some criterion
(cost or objective function). It is proved, that matrix W is

closely related to A™ —inverse of mixture matrix A . The
existing algorithms for approximate joint diagonalization
are generaly divided into two categories. orthogonal and
nonorthogonal diagonalizations. In BSS, using orthogonal
diagonalization, observations are prewhitened so that they
are uncorrelated and have unity variance [1]. However, due
to the limitations of orthogonal joint diagonalization, the
nonorthogonal joint approximate diagonalization (JAD)
has received increasing attention in recent years[4], [5].

In this paper the efficacy of the BSS algorithm based
on nonlinear phase-space reconstruction and nonorthogo-
nal joint approximate diagonalization of severa time-
delayed covariance matrices [6] is investigated in the case
that the observation noise exists. The algorithm is appli-
cable for mixed pseudoperiodic chaotic signals and another
sources, that have temporal structures and non-vanishing
temporal correlation.

Description of the algorithm

Briefly agorithm can be characterized as follows.
Given a group of M sensor signals with N samples

X =[x(1),--,x(N)]e C™" a reconstructed phase
space matrix [7] X®), k=1--,M with d rows and
L=N- (d —1)7: columns (called a trajectory matrix) for

the mixture received by K™ sensor is defined by

X:I(.k) ng) X(Nk_)(d_l)r
(k) (k) (k)

¥ () _ X1:+f 240 N—(:d—Z)r, @
X:I(.l-:() d-1)r ng_)(d 1)z Xs\ll()



where d — the embedding dimension and 7 — time delay.
A high-dimensiona system, i. e. overembedding at 7 =1
is preferable. For M sensors, we obtain M embedding ma-
trices generally with the same values for 7 and d. Using
thei™, i =1,---,d rows of the embedding matrices X &)

we can form a data matrix for all sensors for every embed-
ding dimension, i. e.

Xl(‘lF)(ifl)r Xg];)(i*l)‘[ Xs\}),(d,, )
xi — Xl(f()ifl)r Xgi)(j—l)r Xg\lz,)(.d,l )e ’ (5)
R N A Xt a1y
wherei =1,---,d.

The time-delayed covariance matrixes R, € C M hag
the form

_Lxle

j+1

R.

, (6)
L-1

where j =1,---,d-1.

Given a set of time-delayed covariance matrixes
R = {Rl, R2,~-~,Rj}, where Rj e C™™M | the godl
of ajoint diagonalization algorithm is to find a diagonali-
zing matrix U e CMM called Separating matrix in BSS,
50 that the matrices URjUT, (j =ZL~--,d—1) are as

diagonal as possible. In this work the numerical algorithm
FFDIAG (Fast Frobenius Diagonalization) [5], [8] asitera
tive scheme to approximate the solution of the following
optimization problem

)

are used. The matrix of source signalsis estimated as

S=UX 6)
in which each row represent a separate signal.
Numerical results

The proposed algorithm was applied to artificially mixed
synthetic signals. In the first experiment two mixed x com-
ponents of the Rossler system, defined by

% =-(y+2),
d—¥:x+a-y, ©)
d—f: b+ z(x—c).

with parametersa=0,398; b=2;,c=4anda=0,2; b =
0,2; ¢ = 4,6 respectively were considered. The embedding
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dimension of the reconstructed phase space d = 60 and

time delay 7 =1 for mixed signals were defined and 2000
samples were used in this experiment. In the second
experiment two mixed signals of the Mackey-Glass diffe-
rential-delay equation, defined by

dx _ ax(t —d)
dt 1+ x(t—d)

were used. The two sequences are generated with the same
parameters (a=0,2; b=0,1; c= 10 and 7d = 30) but with
different integrating conditions. The equation is solved
numerically by using the algorithm described in [9]. The
embedding dimension of the reconstructed phase space
d =50 and time delay 7 =1 for mixed signals were
defined. The lenght of sequences — 1600 points. As men-
tioned above it is assumed that the number of sensors M is
equal to the number of signals K. That is, two sensors are
used and the coupling (mixing) matrix in both cases is
given by

—bx(t), 9)

1 0,5}
. (10)

A=
{1,1 1

First, the additive noise n(t) is modeled as a stationa-
ry, temporally white, zero-mean random process indepen-
dent of the source signals, i. e. the covariance matrix of the
noise satisfying:

Elnt+on®) )=o), (11)

where E is the expectation operator, o? denotes the
variance of the noise, 5(t) — the Kronecker delta, and |

denotes the identity matrix. In this case adopting delayed
correlation matrices resolves the influence of the noise,
whereas the autocovariance of noise equals to zero for time

lag 7 # 0. In a smulation environment (the true matrix

A is known) the performance of blind separation can be
characterized by one single performance index defined by
[10]

(12)

where the permutation matrix P=WA, PeC¥
and || . || denotes the Frobenius norm of a matrix. Note that

J(P) isnon negative and if W = A™ J(P) =0 holds.

Fig. 1 shows that the nonorthogonal joint approximate
diagonalization algorithm is robust to the white Gaussian
noise — it provides a perfect separation for signal to noise
ratio (SNR) up to 5 dB. Since the separated signals remain
noisy, they must be enhanced at postprocessing stage. It
should be noted that nonlinear noise reduction, as a prep-
rocessing (before blind separation), can adversely affect
the total performance of the signals separation, since the
errors, committed in this preprocessing stage, lead to the
greater errors in the joint diagonaization stage. As the



criterion that evaluates the total performance of the separa-
tion and denoising of the signals the relative mean square

error £ between the normalized original signal matrix S
and estimated signal matrix Z isused

-2
||

(13)

Separated noisy signals are denoising by applying
nonlinear noise reduction based on the local phase space
singular value decomposition method [11], [12], when the

1 og
N1
where S, — the centered neighborhood N, matrix for

covariance matrix R, is defined as R,

every the reference point S, of reconstructed phase space
and N — the number of neighbors in N . The embedding

dimension d =60 (i. e. overembedding), time delay

7 =1 and the first 60 nearest neighbors for each reference
phase space point were used. For large amount of noise it
becomes a nontrivial problem to identify the correct
neighbors, whereas all neighborhoods merge. As a result
the ¢ is considerably higher at SNR = 5 dB (Fig. 1).
Therefore, for large amounts of noise the nonlinear noise
reduction based on the globa phase space singular value
decomposition method [11], [12] is preferable.
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Fig. 1. The performance index J(P) and the relative mean

square error & versus white Gaussian noise level for separation
the 8) Rossler signals and b) Mackey-Glass signals

Further, the case for chaotic data with colored noise
generated from a three-order autoregressive process
[AR(3)] isstudied
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w, =08-w _,-05w,,+06-w, _,+¢&,, where
&y~ N(O,l) follows the normal distribution. Fig. 2

shows that blind source separation performance remains
approximately at the same level, but nonlinear noise reduc-
tion error islower.
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Fig. 2. The performance index J(P) and the relative mean

square error € versus colored noise level for separation the a)
Rossler signals and b) Mackey-Glass signals

Conclusions

In this paper the BSS algorithm based on nonlinear
phase-space  reconstruction, nonorthogonal  joint
approximate diagonalization of several time-delayed cova-
riance matrices and nonlinear noise reduction are investi-
gated by applying them to noisy mixed pseudoperiodic
chaotic Rosdler signals and Mackey-Glass signals. The
time-delayed covariance matrices are estimated correspon-
ding to the data matrix of first embedding dimension and
data matrix of the every another embedding dimension. A
high-dimensional system, i. e. overembedding, at the no-
northogonal joint approximate diagonalization stage and at
the postprocessing — nonlinear noise reduction stage is
used.

Simulation results show that algorithm is able to sepa-
rate mixed pseudoperiodic chaotic or similar to pseudope-
riodic signals, which have temporal structures and each
source has non-vanishing temporal correlation, in the pre-
sence of a white Gaussian noise or stationary colored noise
up to SNR=(5-10) dB.
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The blind source separation (BSS) algorithm based on nonlinear phase-space reconstruction, nonorthogonal joint approximate dia-
gonalization (JAD) of several time-delayed covariance matrices and nonlinear noise reduction is investigated by applying it to noisy
mixed pseudoperiodic chaotic Rossler signals and Mackey-Glass signals. The time-delayed covariance matrices are estimated corres-
ponding to the data matrix of first embedding dimension and data matrix of the every another embedding dimension. Simulation results
show that algorithm gives a good performance in the separation and denoising of mixed noisy signals in the presence of a white Gaus-
sian noise or stationary colored noise up to SNR=(5-10) dB and can be applied to separation signals, that have non-zero autocorrelation
function for a non-zero time lag, i. e. when analysis based on the second-order statistics (SOS) is applicable. 111 2, bibl. 12 (in English;
summaries in English, Russian and Lithuanian).

K. Tlykenac. «Cijenoe pa3siejieHHe» CMeCH IICEBIONEPHOIHYECKUX XA0THYECKHX CHCHAJOB NpPH HAJIMYMH I1IymMoB //
DJIeKTPOHHUKA U dJIeKTpoTexHuka. — Kaynac: Texnosorusi, 2009. — Ne 3(91). — C. 31-34.

Hccnenyercs aqroputM «cienoro pasnesienust ucrounukos» (Blind Source Separation — BSS), ocHOBaHHBI Ha PEKOHCTPYKIMH
(ha3oBOro MpocTpaHCTBa, COBMECTHOI MPUOIM3NTENILHON HEOPTOrOHAIBHON JMArOHaIM3alMKi HECKOJIBKMX KOBAapHAILIMOHHBIX MaTPHI]
CHTHAIIOB PEKOHCTPYHPOBAHHOTO (pa30BOro MPOCTPAHCTBA, ONPEACICHHBIX C UCIOIb30BAHUEM MATPHILIBI IAHHBIX MEPBOIl MEPHI
W MaTPUIIBI JAHHBIX KaXJIOW IpYroil Mephl (pa3oBOro MpOCTPAHCTBA, a TAKkKE HenuHelHoM duibrpanuu. [lyrem ananusa cmecu
XaoTHYeCKUX curHainoB Poccnepa m curnanoB Makkeil-I'macc mokaspiBaeTcs, 4TO alrOpUTM OOECIIEUMBACT XOpOILee pa3lesieHHe U
GUIBTPALMIO CHTHAJIOB IPU HATHYHMH OEI0r0 MM CTALHOHAPHOTO [BETHOTO IIyMa HPH OTHOIICHHH CHUTHAI-iuyM Bbime (5—10) ab u
MOXET HMPUMEHSTBCS IJIS PA3ICNICHHs MCEBIOIEPUOIMYCCKUX XAOTHYCCKUX WM UM MOJOOHBIX CHTHAJIOB, KOT/Aa KaX[Iblii HCTOYHHK
o0afaet HEeHyJICBOil aBTOKOPPEIALMOHHON (QyHKIHMEH IPH HEHYJIEBOM CIBHIE, T. €. KOT/Ia IPUMEHHMBI CTATHCTUKH BTOPOTO HOPSIIKA.
V. 2, 6u6n. 12 (Ha aHrmiickoM s3bIKke; pedepaThl Ha aHTITMHCKOM, PYCCKOM U JIMTOBCKOM 513.).

K. Pukénas. Triuk§mingy pseudoperiodiniy chaotiniy signaly atskyrimas ,, akluoju metodu® // Elektronikair elektrotechnika. —
Kaunas: Technologija, 2009. —Nr. 3(91). — P. 31-34.

Tiriamas “aklo saltiniy atskyrimo” algoritmas fazinés erdvés rekonstrukcijos, bendros apytikslés keliy rekonstruotos fazines erdves
signaly kovariacijos matricy neortogonalios diagonalizacijos ir netiesinés filtracijos pagrindu. Kovariacijos matricos sudaromos pirmo
rekonstruotos fazinés erdvés matmens duomeny matricos ir visy kity rekonstruotos fazines erdvés matmeny duomeny matricy pagrindu.
Atlikti tyrimai su sumaisytais triuksmingais chaotiniais Rosslerio signalais ir Mackey-Glass signalais parodo, kad algoritmas jgalima
gerai atskirti ir filtruoti signalus esant baltajam Gauso arba stacionarigjam spalvotam triuksmui iki santykio signalas-triuksmas (5-10)
dB ir gali bati naudojamas pseudoperiodiniams chaotiniams bei | juos panasiems signalams atskirti, kada kiekvienas atskiriamas saltinis
turi nenuling autokoreliacine funkcija prie nenulinio postumio, t. y. kada galima taikyti antros eilés statistikas. 11. 2, bibl. 13 (angly kal-
ba; santraukos angluy, rusy ir lietuviy k.).



