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Introduction

Measuring the complexity of various biosignals, such
as human voice, ECG, EEG, a protein sequence or DNA is
a common practice in medicine. The complexity of such
signals is an important characterization of a process and
might be used as a diagnostic tool. The techniques of time
series analysis measuring the complexity can be grouped
[1]:

o Information theory estimates of
(Entropy, Higher Order
Multiscale/Multiresolution methods).

e Chaos-based estimates of complexity (Lyapunov
exponent, Permutation entropy, Hankel matrix).

e Komologrov  estimates (Lempel-Ziv, Hidden
Markov chaine, State machine).

In this paper we analysed the complexity of two
parameters of ECG: the complexity of R wave amplitude
(AR) and the complexity of heart rate (HR). We adapted
the method of Hankel matrix to describe complexity of
these biosignals and measured the Sample Entropy in
comparison. Both techniques were applied to biosignals of
40 people.

The method of Hankel matrix is based on the idea
that some functions of finite H-rank can be written as
linear combinations of exponential functions, where the
number of components defines the complexity. While
sample entropy is a regularity statistic, which quantifies the
unpredictability of fluctuations in a time series and reflects
the likelihood that “similar” patterns of observations will
not be followed by additional “similar” observations.

complexity
methods,

A method based on Hankel matrix

Some functions with finite H-rank can be expressed
as a finite sum of exponent functions [2]:

107

f0=2 ue™ 2 eC. (1)

r=1
Let’s say, we have a data set (y, y, y,...Y,)

consisting of function values y, = f (hk), where h — a

fixed positive number.
A sequence of Hankel matrices is constructed as
follows:
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The number of exponent functions m in (1) equals the
H-rank m=max rang H®. We find such m, that
keN

det H (m) #0 , and det H (m+r) = O’ Vr e N. The H-rank

defines the complexity of function f(X) (dynamic
system). In computer-based realization we consider, that
determinant of Hankel matrix equals zero, if its’ value is
lesser than the fixed precision ¢&.

Then the following algebraic equation (3) is solved:
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Coefficients /_7::(/11,/12,~~a/1m) are found using a
relation A =Ln(Ar)/h, r=12,...m As the roots of (3)

equation are complex, the following formula
(1/hy-LnA, =(1/h)(In|A,|+i(arg A, +27K)), k=0,%1,%2,...



of finding a natural logarithm of a complex number is
used. Here k is appointed so, that (1) formula would be
correct (usually k=0 or k=1). Then solutions
Hys My ey Hiy of linear equations

ﬂ“lj:ul +/72jﬂ2 +...+ﬂ,§1ym = Pj, j=0,..,m-1 are found
(2].
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Fig.1. A scheme of Hankel matrix method
A method based on Entropy measurement

S. M. Pincus (1991, USA) published his famous
paper “Approximate entropy as a measure of system
complexity” on measuring the regularity or predictability
of time series [3]. The approximate entropy was introduced
by Pincus to quantify the creation of information in a time
series.

To compute the approximate entropy of a time series
x(n), n=1,2,...,N, first the series of vectors of length
m, v(n)=[x(n), x(n+1),...,x(n + m —1)[" is derived from
the signal. The distance D(i, j) between two vectors v(i)
and v(j) is defined as the maximum difference in the
scalar components of v(i) and v(j). Then N™(r), the
number of vectors j (with j<N-m+1) such that the
distance between the vectors v(j) and the generic vector
v(i) (with i<N-m+1) is lower than the fixed
parameter r, which set the “tolerance” of the comparison.
Let's now define C"(r), the probability to find a vector

which differs from v(i) less than the distance r, as:

Cr(r)=N"(r)N-m+1)" 4)

and
N-m+1
@"(r)=(N-m+D" > InC"(r) )
i=1
as the logarithmic average over all the vectors of the
cl (r) probability. Finally, approximate entropy is

defined:
ApEn(m,r,n) = ®"(r)— " (r). (6)

Thus ApEn of a time series x(n) measures the

logarithmic likelihood that runs of patterns of length m
that are close to each other will remain close in the next
incremental comparisons, m+1. A greater likelihood of
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remaining close (high regularity or complexity) produces
smaller ApEn values, and, vice-versa, low regularity
(complexity) produces higher ApEn values.

In this work we used an extension of approximate
entropy, called sample entropy  SampEn, which is
designed to reduce the bias of ApEn and is not allowing
self-matches. Other advantages of this recently developed
statistic is discussed in [4].

Results

Parameters of electrocardiogram signal of 10 minutes
veloergometer test were analysed. Physical charge was
increased 50 W in periods of 1 minute from 0 W up to
250 W for every patient. Firstly, we applied the technique
of  Hankel matrix. An interval of a sequence of
normalized and interpolated AR parameters f1(x) and its’
approximating exponent function f2(x) is shown in Fig. 2.
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Fig. 2. If h=1.5and ¢ = 107'°, then H-rank equals 8

So in the case above (Fig. 2) we need 8 exponent functions
(6) to approximate the first interval of signal function and
this value describes the complexity of it. Then the

complexity in next interval of the analysed biosignal is
evaluated.
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Fig. 3. Error function of the f1(x) and f2(x)




As complexity is not constant and is significantly
influenced by physical charge, a graph of complexity is
produced (Fig. 4).
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Fig. 4. The complexity of R wave amplitude (AR) (e= 10""")

In order to reduce noise, integral averaging, using
formula

X+a
1

F(x):zj f (y)dy (3)

X-a

is made. The essence of integral averaging method is
calculation of area under the function of complexity, in
intervals of length 2a. Depending on a value, we get new
complexity functions of different particularity. We chose
a=10 in this work according to our previous studies [5].
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Fig. 5. Heart rate defined by rank
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Fig. 6. Heart rate (HR) sample entropy, computed in intervals of
30 ECG cycles

We also calculate SampEn(x(n) ,m ,r), where x(n) — a
data set of ECG parameters of length n, m — embedding
dimension and r — the maximum allowed difference
between embedded vectors or “tolerance”. Firstly, we
divided ECG parameter’s record into intervals of 30 ecg
cycles and measured sample entropy in every interval.
There is no precise means of knowing the best embedding
dimension, thus we calculated SampEn for values of m
from 2 to 10 and chose the smallest one, because with this
value SampEn varied mostly for the signal with physical
charge and in the recovery period. This dimension is also
mostly recommended in literature.

The "tolerance" r is also very important parameter. In
principle, with an infinite amount of data, it should
approach zero. With finite amount of data, or with
measurement noise, it is not always clear what is the best
value to choose. Past work on heart rate variability [6] has
suggested setting r to be 1. While calculating sample
entropy for R wave amplitude (AR) we chose r = 0.2 times
the standard deviation of the data, because the value r
between 10% and 25% of the standard deviation of the
data set x(n) was recommended by Pincus [6].
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Fig. 7. Heart rate (HR) sample entropy, computed in intervals of
50 ECG cycles, increased 42,56 % in the recovery period for a 20
years old woman from the first age group
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Fig. 8. Heart rate (HR) sample entropy, computed in intervals of
50 ECG cycles, increased 139,86 % for woman above 40 years of
age from the second age group

Analysing data of 40 persons, we get that rank of
Hankel matrix as well as Sample Entropy, increases
significantly for heart rate of all patients (Fig. 5, Fig. 6)
and on the contrary decreases for R wave amplitude in the
recovery period. Thus we decided to evaluate this change
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in aspect of special factors. The data of two groups of
women: the first one — women between 20 and 25 years of
age and the second — women over 40 years of age, all
aerobic fitness participated, were analysed. It appeared that
the entropy of heart rate variability increases much more
for older persons in the recovery period. The entropy
change overstepping 50% of increase was very rarely
observed in data of young women while entropy was
usually increasing more than twice for the second group as
figures 7 and 8 illustrate. Besides, we observed entropy
values getting smaller generally for women from the
second group. This additional fact is also noted by other
authors in [8].

Conclusions and future works

The results show that complexity of biosignals has
the same change tendency during rest and for a range of
workloads for all analysed patients, using both
qualitatively different analysis techniques — Hankel matrix
and Sample Entropy. And though complexity change is
highly individual characteristic, different to each person, it
emerges, that special factors such as age has a measurable
influence on it. Based on our study, we speculate that
complexity changes of heart rate dynamics are more
mobile for older persons, though the very complexity
values become lesser. These observations might be useful
for diagnostic purposes evaluating the effect of activity for
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A lot of diagnostics criteria are collected by registration and analysis of electrocardiogram (ECG) parameters. Evaluating the
complexity of the signal is an important method in cardiology. In order to get more accurate evaluations of complexity it is purposive to
use qualitatively different methods of cardio-signal analysis. In this paper, complexity is presented as a statistic estimate and expressed
as a special algebraic function. Both methods gave similar results. Important tendencies of complexity change were observed, specified
by age and workload influence on heart work. More detailed analysis of complexity change will be performed in further research.

I11. 8, bibl. 8 (in English; summaries in English, Russian and Lithuanian).

A. Hlnonaiite, 3. HaBunkac, A. BaiiHopac. Onenka xkomiuiexkcHoctd napamerpos JKI' ucnonb3ysi JHTponHI0 BbIGOPOK M
MaTpuubl XaHKes // DjeKTPOHHKA U djeKkTpoTexHuka. — Kaynac: Texnomnorus, 2009. — Ne 4(92). — C. 107-110.

BosnbIioe KOJNMYECTBO KPUTEPUEB JHArHOCTHKU CEPACYHBIX 3a00JIeBaHMM ITOMYYEHBI IPHU PETHMCTPALMU M HAXOKACHHU Pa3sHBIX
napameTpoB kapauorpamMm. OleHKa KOMIUIEKCHOCTH KapAHOCHTHAJIA SIBJISIETCS] OYCHb BAXKHOM B Kapiuosioruu. J{is moiydenns: Gonee
TOYHBIX PE3yJIbTaTOB OLIEHKH KOMILUIEKCHOCTH MapaMeTpoB CUTHAJa IeJIecoo0pa3Ho Mo KpaifHel Mepe, MPUMEHSTh ABa KaueCTBEHHO
pasHeix moaxozaa. Ilostomy, B 3Toif paGoTe MBI OLEHUM KOMIUIEKCHOCTh KaK CTaTUCTHYECKYIO BEIUUYHHY, KOTOpas OOBIYHO
UCTIONB3yeTCsT B CTAaTUCTHKE W BhIpa3suM e anreOpamdeckyio ¢ynkmmio. Oba momxona JaaM CXOXKHE pe3ylnbTaThl. BputH Taroke
3aMedeHBl HEKOTOphIE TEHJCHINH M3MEHEHHS KOMIUIEKCHOCTH, BBI3BAaHHBIC BIMSHHEM BO3pacTa W (M3HUIECKON HAarpy3Kd Ha paboTy
cepana mnanueHTa. bonee meTanbHBIA aHANNM3 M3MEHEHHs KOMIUIEKCHOCTH KapIHOCHTHAla HaMedeH Ha Oymymee. M. 8, 6ubn. 8 (ma
AHIINICKOM sI3bIKe; pedepaThl Ha aHTTIMHCKOM, PYCCKOM U JTUTOBCKOM 513.).

A. Sliupaité, Z. Navickas, A.Vainoras. EKG parametry kompleksiSkumo vertinimas naudojant im¢iy entropija ir Hankelio
matricas // Elektronika ir elektrotechnika. — Kaunas: Technologija, 2009. — Nr. 4(92). — P. 107-110.

Didelé dalis zmogaus Sirdies ligy diagnostiniy kriteriju gaunama registruojant ir analizuojant elektrokardiogramos parametrus.
Kardiosignalo komplesiskuma ypa¢ svarbu vertinti kardiologijoje. Norint gauti tikslesnius komplesisSkumo ivercius, tikslinga taikyti
kokybiskai skirtingus kardiosignalo tyrimo metodus. Siame darbe komplesiskumas pateiktas kaip statistinis jvertis, taip pat yra isreikitas
specialia algebrine funkcija. Abiem metodais gauti panaSiis rezultatai. Buvo pastebétos svarbios kompleksiskumo kitimo tendencijos,
nusakomos amziaus ir fizinio kriivio jtaka paciento Sirdies darbui. Detalesné komplesiSkumo kitimo analizé bus atlikta tolesniuose
tyrimuose. I1. 8, bibl. 8 (angly kalba; santraukos angly, rusy ir lietuviy k.).

110



