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Introduction

It is very important for the resource distribution and
control to predict the network traffic’s future varying trend.
Via the effectively observed value of some time series in
timet, we can predict its future value in time t+t , and thus
build the optimized foundation for the resource distribution
and control.

Traditionally, autoregressive moving  average
(ARMA) model has been used for network traffic
prediction, which has difficultiesin setting up its parameter
values and dealing with non-linear time series. Another
complexity is related with self-similar nature of network
traffic makes high accurate prediction difficult. The
parameter fitting procedure is time consuming. The goal is
to forecast future traffic variations as precisely as possible,
based on the measured traffic history.

Internet Traffic Simulation via Self- Similarity

The process is self-similar if its statistical behavior is
independent of the time-scale. This means that averaging
over equal periods of time the statistical characteristics of
the process does not change. This is a mathematical
concept of the self-similarity.

One of the first attempts to describe long range
dependent (LRD) traffic exploited Fractional Brownian
Motion (FBM) models, whose Gaussian nature helpsin the
study of the queuing behavior. However, FBM models
present a restrictive correlation structure that fails to
capture the short-term correlation of real traffic and itsrich
scaling behavior.

An M/G/o queue with service time with infinite
variance is used in [1], [2] to model video sources. All
these traffic models deviate considerably from classical
Markovian models, which, however, continue to be widely
used for performance evaluation purposes [3], [4], [5], [6].
In these works, the Markov Modulated Poisson Process
(MMPP) is considered as the best Markov process to
emulate LRD [4] and scale invariance [3] (multifractality
in particular), though in [5], [6] it is correctly pointed out
that any MMPP cannot exhibit LRD in a mathematically
proper way, i.e., it is aways possible to find a time lag
above which an MMPP correlation decays exponentialy.

On the contrary, we need a model which is equally good
for capturing short range dependence (SRD) and LRD
processes. We will explore fractiona ARIMA (FARIMA)
time-series model for capturing LRD aswell as SRD [7].

ARMA, ARIMA and seasonal ARMA

Box and Jenkins developed the ARMA model which
is the combination of an autoregressive (AR) model and
the moving average (MA) model. The ARIMA (p,d,q)
model combines the Auto Regressive (AR) and Moving
Average (MA) models developed earlier with differencing
factor that removes in trend in the data or time series. This
time series model is a kind of statistical model broadly
used in network traffic analysis[8], [9], [10].

The order of the ARMA model in discrete time t is
described by two integers (p,q), that are the orders of the
AR and MA parts, respectively. The general expression for
an ARMA-process y(t) is the following:

y(t):Zp:a(i)-X(t—i)+Zq:b(i)-s(t—i)+c+g(t). )

where p — the order of the AR part of the ARMA model;
&,8,...8, — the coefficients of the AR part of the model
(of the recursive linear filter); q — the order of the MA part
of the ARMA model; b,,...bg — the coefficients of the MA
part of the model (of the non-recursive linear filter); X(t) —
dements of the (input) white noise; ¢(t) — output
uncorrelated errors.

For p,q,P,Q>0 and s>0 we say that a time series { X}
is a multiplicative seasonal ARMA model (SARMA (p,q)
x (P,Q)s) if (see (2)):

(B¢ (B)X= O(B) 6(B)W, @)
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For several time series containing different length
number and statistics we build the ARMA, ARIMA and
SARMA network traffic models.

Mod€dl Validation

If the model is validated on the same data set from which
it was estimated, the fit always improves as the flexibility
of the model structure increases. We need to compensate
for this automatic decrease of the loss functions. There are
several approaches for this. Probably the best known
technique is Akake's Final Prediction Error (FPE)
criterion and his closely related Information Theoretic
Criterion (AIC). Both simulate the cross validation
situation, where the model istested on another data set.
The AlCisformed as

AIC = log(V(1+ 2%)) : )

where d — the total number of estimated parameters, N —
the length of the data record, V — the loss function
(quadratic fit) for the structure in question.

FPE=—Nv. 6)

Resear ch

Our research is emphasized on analysis of ARMA,
ARIMA and SARMA use for prediction of different
internet traffic. Internet traffic is a wide concept. Internet
traffic can contain different type of data gathered by
different features, for example, flow metrics (duration,
packet-count, total bytes), packet inter- arrival time (mean,
variance), website access statistics ect. In our experiments
we use website access statistics (application level). Traffic
data is taken from website http://freestats.com/ - website
access statistics for different time periods, collected for 7
days (7d) and 28 days (28d). Another data trace is
simulated using FARIMA model using the setting
parameters for the Hurst parameter H and the number of
observations N: H=0.362 and N=168 (Farima7d), H=0.50
and N=672 (Farima28d). In our experiments we analyze
traffic sources asgivenin Table 1.

Table 1. Summary of the traffic data used in the study

No Trace name Observations | Step
1. 7d 168 1h
2. | 28d 672 1h
3. Farima7d (simulated) 168 1h
4 Farima28d (simulated) 672 1h

For statistical analyses we use program package
“MATLAB p6.5", MATLAB scripts for ARMA, ARIMA
and SARMA analysis[11].

The stepsin our analysis can be summarized as
follows:

1. Testing for stationary of the time series.
2. Seasonality detection.

3. Identification of the order of the AR component and the
MA component from the autocorrelation plots of the
stationary series.

4, The model parameter estimation and validation.

5. Estimation of the prediction accuracy.

Review of Studied Cases
Firstly, we analyse the autocorrelation function (ACF)

of our experimental data (see Fig.1).
ACF
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Fig. 1. ACF for traffic traces

The ACF doesn't give a clear concept of the data
periodicity. For this reason we analyze periodogram (see
Fig.2) of our experimenta data to identify the period
(seasonality) if it exists.
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Fig. 2. Periodogram for trace “7d”

Fig. 2 shows the periodogram of trace “7d”. We can
see that:

— Thereis a peak when the frequency f is about 0.0119
which is called the main frequency. From this we can we
can get the periodicity T=1/f=1/0.0119=84 and infer that
the period of this network traffic is 84.

—There is a second peak when the frequency f is about
0.042 which is caled second harmonic. This second
harmonic period of this network traffic is 24 (24 hoursor 1
day).

— There is a third peak when the frequency f is about
0.14 which is called third harmonic. The period of this
peak is7.

The period estimated from the periodogramms of
different data traces are as follows:



- fortrace“7d” — T=7, T=24, T=84;

- fortrace“28d” —T=24;

- fortrace“Farima7d’ — T=24, T=28;
- for trace“Farima28d” — T=112.

Accordingly to the estimates period of seasonality we
can build SARMA model for each data trace.

In our experiments with SARMA models we seta as
input values: N — number of time series (observations); T —
period of seasonal part; Tye — prediction period (default
Toed=T); Ssiee — NUMber of seasons to slide between
estimation (default Sgiges=2); Tey — validation period,
estimated:

N

Taking into account estimated seasona part of the
traffic traces, we calculate the validation period Tey . For
rea trace “7d” we select period of T=7, 12, 24. For red
trace “28d” we select period T=24. For example, for the
traffic trace “7d” of seasonal part T=7, the validation
period in thiscaseis Ty=168/7-1=23.

The calculated validation periods of different data
traces are asfollows:

- fortrace“7d" — Ty =6, Tog =13, Teg =23;
- fortrace“28d" — Ty =27;

- fortrace“Farima7d” — Teg =5, Teg =6;

- for trace “Farima28d”’ — T =5.

The best results for real and ssimulated traces using
ARMA, ARIMA and SARMA models are summarized in
the Table 2 and the Table 3. The best result in the Table 2
and the Table 3 is marked in bold.

Table 2. Best AIC and FPE for rea traces

Trace 7d 28d

Model

ARMA Modd: (p,0)=(2,1) Modd: (2,2)
AlIC: 8.25 AIC: 8.45
FPE: 3840 FPE: 4697

ARIMA Model: (p,d,0)=(2,1,1) Mode: (p,d,g)=(1,1,2)
AlC: 8.19 AIC: 8.43
FPE: 3618 FPE: 4587

SARMA Model: (2,0) x(1,1); Mode: (1,0) x(0,0)24
AlIC: 8.05 AIC: 8.31
FPE: 3167 FPE: 4055
Model: (1,0) x(1,1)2.
AlIC: 8.05
FPE: 3179
Mode: (2,2) %X(1,1)24
AIC: 7.10
FPE: 1433

Table 3. Best AIC and FPE for simulated traces

Trace | Farima7d Farima28d
Model
ARMA Mode (p,0)=(2,2) Model (p,0)=(2,1)
AIC: -2.33 AIC: -9.09
FPE: -7.91 FPE: -0.0913
ARIMA Mode: (p,d,q)=(1,1,2) Model: (p,d,q)=(1,1,2)
AlIC: -2.11 AIC: -6.77
FPE: -8.09 FPE: -0.0934
SARMA Model: (0,1) x(1,1)24 Mode: (0,1) x(1,1)112
AlIC: -1.31 AIC: -4.96
FPE: 0.316 FPE: -0.0071
Model: (0,1) %(1,1)8
AIC: -3.74

FPE: -0.026

As we see in the Table 2 and the Table 3, the best
result for simulated traces is achieved with SARMA
model.

Fig. 3 shows the prediction values against real values
for the best results for traffic trace “7d” using SARMA
(2,2) %(1,1),4 . Fig. 4. represents ACF and PACF of
residuals for traffic trace “7d” using SARMA (2,2)
*X(L1)2s.
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Fig. 3. Prediction curve for trace “7d” with SARMA (2,2)
X(1,1)24
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Conclusions

We performed experiments with real traffic and
simulated traffic to study the feasibility of the proposed
steps on modeling and prediction. An important aspect is
the seasonality of the traffic traces. In cases when we
detect seasonality, the prediction model with the less AIC
is SARMA. We found that the relative error between
prediction values and actual values are less than 0.3.

Research must be continued for deeper studies of
internet traffic analysis. Our research has started with
traffic analysis in the application level containing less than
700 observations. Interesting statistics could be achieved in
other network layers according to the OSI. These
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An overview of ARMA models used for traffic prediction is presented. The prediction of time series plays a very important role for
network planning. For this reason we build the network prediction models using ARMA, ARIMA and seasonad ARMA (SARMA)
model. Analyzing these models we can underline the significance of seasonal component detection. SARMA is the best prediction
model for time series containing seasonal component. 111. 4, bibl. 11 (in English; summariesin English, Russian and Lithuanian).

I'. Pyrka. HexoTopble acmeKThbl aHAIM3a MPOTrHO3HPOBAHHUS MOTOKOB Nepelayd JAHHBLIX B HHTepHeTe // DJjeKTPOHHMKA U
nekTporexuuka. — Kaynac: Texnosorus, 2009. — Ne 5(93). — C. 7-10.

Jlano mnpencrasienue o6 ucnosnszoBanun ARMA  Mozeneii (MeToma) NIpH NPOTHO3MPOBAHMU HArpy3ku ceTH (Tpaduxa).
IIporHosupoBaHue BPEeMEHHBIX IIOCIENOBATEILHOCTEH UrpaeT OYeHb BaXKHYIO POJIb NPY IUIAHUPOBAHHMHU ceTed. B cBA3M ¢ 9THM MBI
paszpaboTanan Monenu (METoJbI) MPOrHo3upoBaHus cered, ncrons3yst ARMA, ARIMA  u nepnoguaeckyto mogens ARMA. Tlposens
AHAIM3 BBILICYIOMSHYTBIX MOJENCH (METOM0B), MBI MOKEM MOJYEPKHYTh BaKHOCTh HAXOXKACHHUS NPOMEXYTKOB BpeMeHH. SARMA
SBJIETCA HAMIYYIINM METOIOM IS IPOTHO3MPOBAHUS IIPOMEXYTKOB BPEMEHH, COAEPKAIMNX HePHOIIMUYECKYI0 cocTaBistontyto. M. 4,
6u6. 11 (Ha aHTIUICKOM sI3bIKE; pedepaThl Ha aHTITMHCKOM, PYCCKOM H JIATOBCKOM $3.).

G. Rutka. Kai kurie interneto duomeny srauty prognozavimo analizés aspektai // Elektronika ir elektrotechnika. — Kaunas:
Technologija, 2009. — Nr. 5(93). — P. 7-10.

Pateikta duomeny srautams prognozuoti naudojamy ARMA modeliy analizé. Prognozuoti laikines sekas labai svarbu planuojant
tinklus. Dél to tinklo duomeny srauty prognozavimo modeliai buvo sudaromi naudojant ARMA, ARIMA bei sezonini ARMA
(SARMA) modeli. Atlikus siu modeliy analize galimateigti, kad sezoninis komponenty detektavimas turi didele reiksme, o prognostinis
modelis SARMA geriausiai tinka sezoninj komponenta turinéioms sekoms prognozucti. 11. 4, bibl. 11 (angly kalba; santraukos angly,
rusy ir lietuviy k.).
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