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Introduction

Many real-world machine learning tasks are either
regression or classification problems. In standard
regression or classification models the inputs usually are
represented as vectors. However, in some practical
problems matrix or tensor-based inputs arises naturally
(for example in image, video stream, multidimensional
time series or textual data analysis, bioinformatics and
other fields). In such cases, the vector-based representation
does not consider an inner structure of the inputs, which
can provide useful information. For example, if the inputs
are images (i.e. mxn matrices), representing an input as
mn dimensional vector will delete an information about
the structure of the original image. Moreover, the
dimension of such vectors can be very high, and
consequently large training set is required to efficiently
estimate the parameters of the model. Computer
experiments [1,2,3] shows, that even when initial inputs
are vectors, it can be useful to represent them as matrices
(or higher order tensors) and apply matrix/tensor-based
models. This approach can be especially useful in the case
of small training sample [1,3], since matrix (or tensor) -
based models usually have less parameters.

Recently, various machine learning techniques,
involving matrix or tensor representation of the inputs
received much attention in the literature (e.g. linear models
[1,9], non-linear models [2,3], probabilistic techniques [5],
tensor principal component analysis [8], tensor
discriminant analysis [6], Tucker decomposition [7], and
correlation tensor analysis [4]).

In this article we propose a new linear model for
matrix-based regression or classification and apply it to
some standard benchmark data sets. The computer
experiments reveals that in the case of small training
sample the proposed linear model can be more efficient
than the standard linear regression and Cai‘s model [1].

The model

In this section we shortly describe a standard linear
regression and introduce a new linear matrix-based model.
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Let y=[y,,V,,....¥,,]" be a vector of the desired responses

and X =[x,,x,,....x,,]’ be an observation matrix (where

X, =[x, X,,] €R™ , y, €R). In the standard linear

1
regression we seek a m+1 dimensional vector ¢ , which
minimizes the regularized euclidean norm

J=ly-xal + 2]l (1)

where 2>0 a regularization constant.

Provided, that the inverse of X7 X + Al exist, the
minimizer of (1) is defined by

a=X"X+A)"'X"y )

and the model is

yixla)=x'a,

3)

where x=[l,x,,..,x,]" € R™" — an input vector; / — an

identity matrix. In [1] proposed a linear matrix-based
model:

Y(X[0)=u"Xv+b, 4)
where X — mxn-dimensional input matrix; u — m-
dimensional parameter vector, Vv n-dimensional
parameter vector; b — bias (by 6={u,v,b} we denote all
parameters of the model). When the inputs are matrices,
(4) model often is more efficient than standard linear
regression [1], because it has significantly less parameters
(if X is mxn matrix (4) model has m+n+1 parameters,
while standard linear regression (3) has even mn+1) and
exploits an inner structure of the input matrix. Smaller
number of the parameters also is useful when the training
set is small.

In [2] we generalized (4) model to the non-linear
version using the multilayer perceptron (MLP) neural
network framework:

WX 10)= a0 Xv,+b,),

i=1

)



where X is an mxn-dimensional input matrix; r denotes the
number of neurones; 0=1{b,{a, u,,v,}'_;} denotes all

parameters of the model; o — a non-linear activation

function (for example, hyperbolic tangent
e —eit .. . . 1
o (1) = ) or logistic sigmoid & (f)=—
TH( ) e te LS() lte’
functions).

In this article we will investigate a linear variant of
the (5) model:

yMNNL(r)(X |0) = Zu,.TXv[ +b> (6)

i=1

where 0 ={b,{u;,v,}'_ } (all parameters of the model). We

will call model (6) matrix-based neural network with linear
nodes.
Denote the training set of M observatios by

T={X,y}", where X,- mxn matrices (inputs), ), —

mn
scalars (outputs). When r <

model (6) still have less
+n

parameters than standard linear regression and possibly can
be used more efficiently than (3) when the training set is
small. In our opinion (6) model can be more efficient than
(4) and standard linear regression, when the size of the
training set is too small to efficiently estimate the
parameters of full linear regression, but sufficiently large
to use more complex than (4) model, since (6) model
provides more freedom than (4). (6) can be considered as
an intermediate model between models (4) and (3) (full
linear model).

In the following we will derive an algorithm for
minimizing the regularized sum squared error (RSSE),
defined by:

E= Y Qain XD =3V +20 + Y wu, +vv,), (1)
=)

(X.y)er

where A>0 — a regularization constant, fixed by the user.

Note, that (6) model is not equivalent to (4). Because
the (6) model is linear we do not need a gradient-based
methods for parameter optimization, since we can easily
compute the derivatives of (7) and solve them. However,
each optimal parameter depend on other parameters of the
model (6). Therefore an iterative procedure must be
applied. Define

a, x :Z”;va . ®)

J#k

By setting derivatives of (7) with respect to each
parameter U, ,v,and b to zero we derive the following

iterative algorithm for training the model (6):

Algorithm 1

1. Fix the number of neurones of the model (6)

mn .
1<r< s chose initial

m+n

arbitrarily parameters
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u, €R",v,eR" and beR, k=12,..r, desired learning
error ¢ > 0, regularization constant A>0, set an iteration
number ¢ =0 and fix maximal iteration number T.

2. For each k-th regressor calculate new parameters:

M M

u =Q X X+ A" (v =a )X v ©)
i=l =
M M

Ve = (z I'T”k”kT X; +)" Z(V; T x, )X/T“k ) (10)
x| =

b= ! i(y.—iu.TX.v.) an

M+2143 St ’

where M — size of the training sample; / — an identity
matrix; the coefficients @, , — defined by (8).

3.Setn:=n+1.
4. Repeat step 2.) until RSSE <& or iteration number
t>T.

Similarly as in [1] we can prove the convergence of
the Algorithm 1.

PROPOSITION. For any A>0, the sequence of RSSE
values, defined by the Algorithm 1 converges.

Proof. At every step of Algorithm 1 we solve a
standard regularized least squares problem, thus the value
of (7) function non-increases. Obviously, (7) is bounded by
0. Since any monotonous and bounded sequence
converges, the result follows.

Define an inner product between two matrices A and
B as

<AB>=) 4B, . (12)
i

The following proposition shows how acurately any
linear model can be approximated by (6) model.

PROPOSITION. Let X € R™". Then for any matrix
W e RWlXVl

. 2~
min [< X, > =y, (X [O) <X D] 07> (13)
i=r+l
where o; — i-th singular value of W.
Proof. Without loss of generality we assume, that
min(m,n)=n. Let W=UZV" a singular
decomposition of the matrix W, where U =[u,,...,u,],

value

V=[v,.,v,], and 2 - diagonal matrix with singular

values O in the diagonal. By well known Eckart-Young

1
theorem best rank-r approximation of the matrix W
satisfies

A 12 u
_ min “W—W =Yo7, (14)
Wrank(W)=r ol
~ I
and minimum is achieved at W = Zaiu,.vf . On the

i=1

other side, we can write model (6) as



Vanrn (X 10) = Zo;uiTXv, =< X, W > (15)

i=1

A

Thus, (6) is a linear model with special weights W .
Therefore by (14) left side of (13) is equal to

|<)(,W>—<X,I/IA/>|£||X||2 Zn:o;.z .

i=r+l

(16)

Computer experiments

In this section we will empirically compare the
proposed model (6) with (4) model and full linear
regression model (3). In the computer experiments we will
use the standard benchmark data sets from UCI machine
learning repository. All data sets used in our experiments
are binary classification problems. To demonstrate the
effects of the matrix-based models we will consider small
training sets. For convenience, the size of the training set is
equal to the dimensionality of the input vector. The
training data (inputs) was standardized by subtracting the
mean and dividing by the standard deviation. In the cases
of (4) or (6) matrix-based models, the input vectors were
transformed into the matrices (Matrix column of Table 1).
The measure of performance of the model is the correct
classification probability over the testing set. In each
experiment the training set of fixed size was selected
randomly, all experiments were performed 100 times, and
averaged results presented in the Table 1. To test the
statistical significance of the results the signed rank test for
zero median between the differences of the performances
of the models was applied (see Table 2). The models (4)
and (6) were trained according to the Algorithm 1 for
T=10 iterations. The regularization constant A=0.01 was
fixed for all data sets and all models.

Table 1. Correct classification probabilities over the testing set.
=1 — (4) (Cai‘s) model, r=2 — (6) model, Full — full linear model
(3), Dim — dimensionality of the input vectors and Matrix — size
of input matrices for (4) and (6) models

Dataset r=1 r=2 Full | Dim Matrix
Tonosphere 0.77 1 0.79 | 0.75 33 11x3
Breast cancer 0.90 0.88 0.89 10 5x2
Sonar 0.67 0.71 0.58 60 10x6
Specft 0.70 | 0.72 | 0.56 44 11x4
Australian 0.73 0.70 | 0.65 14 7x2
Musk 0.73 0.71 0.67 | 166 83x2
German 0.60 | 0.58 | 0.55 24 6x4

The results of the Table 1 are statistically significant
with p-values in the Table 2 (small p-values indicates
statistical significance).

Table 2. P-values of the signed rank test for zero median between
the differences of the performances of the models

Dataset r=1/r=2 r=1/Full r=2/Full
Tonosphere 0.01 ~10" ~107
Breastcancer 0.04 0.11 0.71
Sonar ~10 ~10™ ~10"®
Specft 0.01 ~107° ~10"7
Australian 0.008 ~10® ~107
Musk ~107 ~1071° ~10
German ~107 ~107 ~107
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Conclusions

According to the experimental results we can
conclude, that in the case of small training sample, (6)
model can be more efficient than (4) or full linear model.
In most cases matrix-based models (r=1 and r=2 columns
of Table 1) outperformed full linear model. In our opinion,
this is because (4) or (6) models have less parameters than
(3) and with the same amount of training data they are
estimated more efficiently. Moreover, since the (6) is a
linear model with structured parameters, it can be
interpreted as a form of additional regularization. From the
perspective of Vapnik-Chervonenkis (VC) theory [10],
one can check, that the VC dimension of full linear model
with m'n variables is equal to hy;pe,,=m-n+1, while that of
model (6) with order r is equal to hpyny=rmax(m,n)+1. It
is well known [10] that for any binary-valued decision
function set S the following inequality holds with
probability 1-n

2N n
h(l+log—)—log*
( gh) g

E

<
Test —
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Training

N

where h is Vapnik-Chervonenkis (VC) dimension [10] of
S, N is the size of training set, and Erey and Epinine are
respectively testing and training errors. Thus, the
confidence term in (17) of (6) model does not exceed that
of the full linear model.

Table 2 shows that most of the results (except the
breast cancer case) are statisticaly significant.

The proposed model can be easily extended to the
higher order tensor case. An interesting questions, left to
the future work, is an efficient estimation of the optimal
model order r and the size of the input matrix or tensor.
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problems, experimentally demonstrated, that in the case of small training sample, this model can be more efficient than standard
techniques. In each experiment the training sample was selected randomly, the results (correct classification probabilities on the testing
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Ipennoxena HoOBas JMHEHHAas MOJEIb U perpeccHu/KiaccH(UKAMK MaTPUYHBIX JaHHBIX. [TOCTPOEH anroputM Ui OLEHKH
MapaMeTpoB, NPOAHATH3UPOBAHBI HEKOTOPBIE CBOMcTBAa Mojeny. [IpeanoskeHHas Moenb Obla MPUMEHEHA ISl HEKOTOPBIX OMHAPHBIX
npobieM KraccuuKay. DKCIEPUMEHTAIBHO MPOIEMOHCTPUPOBAHO, YTO B CIIydae MO BEIOOPKH 00yUYeHHUs MPeIOKEHHAsT MOZETb
MoOXeT ObITh Oonee >(deKTHBHOH, UYeM cTaHTapTHBIE METONBl. B KakaoM ombITe BBIOOpKAa OOydeHHs Obula BBIOpaHa CiTydaifHo,
Pe3yJIbTaTHI (BEPOSITHOCTH NPABIIILHON KiIacCH(UKanny Ha BEIOOPKE TECTHPOBAHWS) yepeIHeHb!. [IpoBepena craTiucTHIecKast THIOTe3a
00 >ddextuBHOCTH Mozenei. [Io paHrOBOMY KpPHUTEpHIO 3HAKOB OOJBIIMHCTBO PE3YJBTATOB SBISIOTCS CTATHCTHYECKH 3HAYMMBIMHL
bub:. 9 (Ha aHrMiickoM s13bIKe; pedepaThl Ha AHTIIUICKOM, PYCCKOM H JINTOBCKOM S13.).

P. Daniusis, P. Vaitkus. Tiesinis neuroninis matricy tinklas // Elektronika ir elektrotechnika. — Kaunas: Technologija, 2009. —
Nr. 6(94). — P. 39-42.

Pasitlytas naujas tiesinis regresijos bei klasifikavimo modelis, kai i¢jimai yra matricos. Sukonstruotas iteracinis algoritmas $io
modelio parametrams {jvertinti, iSnagrinétos kai kurios modelio savybés. Pasitilytas modelis pritaikytas ivairiems dvieju klasiy
klasifikavimo uzdaviniams, eksperimentiskai parodyta, jog esant mazai mokymo imciai jis gali biiti efektyvesnis uz zinomus
analogiSkus modelius. Kiekvieno eksperimento metu mokymo imtis buvo iSrenkama atsitiktinai, gauti rezultatai (teisingo klasifikavimo
tikimybés su testiniais duomenimis) suvidurkinti, patikrintos statistinés modeliy efektyvumo hipotezés. Remiantis zenkly kriterijumi
nustatyta gauta, jog daugeliui atvejuy rezultatai yra statistiskai reik§mingi. Bibl. 9 (angly kalba; santraukos angly, rusy ir lietuviy k.).
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