Lublin University of Technology as a Partner of the Project: Modern Learning – Development of Didactic Potential of the University

A. Wac-Włodarczyk, P. Billewicz

Lublin University of Technology, ul. Nadbystrzycka 38A, 20-618 Lublin, Poland, phone: +48 81 538 4292, e-mails: a.wac-wlodarczyk@pollub.pl, p.billewicz@pollub.pl

Introduction

Since the September 2008 Lublin University of Technology has been realizing the project entitled Modern Education – development of university’s didactic potential. This idea had been placed among 287 other propositions from the whole country, competing with each other for the funds assigned by the European Commission, which is a hundred millions of euro for 32 institutions. In the process of strict selection Lublin University of Technology has been granted of 90 points, whereas at most 100 points could be assigned to the one proposition. As the result, it had been enough to take the 22nd place of the rank list outlining all 32 institutions that had been become eligible to be co-financed.

The Lublin University of Technology is the only higher education institution in its region which had been awarded in the mentioned competition. It has to be underlined that overall amount of assigned funds will almost reach the level of 2.5 millions of euro. Implementation of the project into the structures of the University is planned to be done until the end of March 2013, nonetheless at the current stage of its realization it is undoubtedly possible to determine positive influence on the quality of education in the scale of the whole University.

The main aim of the project is to adjust the level of education at Lublin University of Technology to the real requirements and necessities of industry and labour market. This task also includes improvement of quality of education together with widening and expansion of educational offer.

Those general aims mentioned above will be achieved by realization and application the following particular aims [1]:

- Increasing the number of people who graduates courses that are crucial from the industrial point of view; it could be done by spreading educational offer, creating new speciality courses and introducing curricula for supplementary classes for those students who have problems with maths and physics;
- Improving the qualification level among the academics and the LUT administration employees by organizing studies, trainings and workshops in the country and abroad;
- Enabling knowledge transfer procedures between University and industry through lifelong learning courses and doctoral grants;
- Expanding cooperation range between academic and business environments by continuing the idea of organizing 3-month practises available for students and helping them to be up to date with situation on labour market by organizing conferences, discussion panels and job fairs;
- Appropriate preparation of graduates to entering the labour market as the result of attendance to special workshops and personal trainings which develop skills necessary after graduation but not included in the standard course curriculum.

Taking into consideration fields of the impact, the project described above is a widespread and complex programme which elements are grouped into 7 big thematic modules implemented by certain faculties or other units in a structure of the University. The following modules of the project could be specified:

1. Material Engineering (introducing and realizing education process at the second-level course, starting of lifelong learning courses, cooperation between higher education and industry institutions in the country and abroad in the field of exchange of academic personnel).
2. Renewal Energy Sources – spreading the range and increasing the quality of educational offer (doctoral grants, new curricula, courses and lifelong learning activities, industrial practises and trainings for academics).
3. Increasing qualifications of the University employees in the context of language skills.
1. Office applications (8 hours of lectures and 16 hours of laboratories). Aim of the classes: to introduce and develop methods of work with popular office application instruments. Participants will get skills which are necessary to prepare and format text documents, spreadsheets and graphic presentation. They will acknowledge theory of Visual Basic for Application in order to learn how to write individual MS Office macros.

2. Computer graphics (8 hours of lectures and 16 hours of laboratories). Aim of the classes: to familiarize students with professional systems and applications for 2D and 3D vector graphics edition (AutoCAD, SolidEdge) and raster graphic edition (GIMP). Students will be able to create and modify basic 2D and 3D vector objects and also to manage attributes of drawings and objects. As the result they will learn how to make and print technical design and what are the possibilities of digital processing of raster graphics.

3. Information systems designing (6 hours of lectures and 6 hours of laboratories). Aim of the classes: to make the participants familiar with information concerning designing and application of information systems. They will study methodology of structural analysis and designing of information systems together with UML language. Students will obtain skills of designing functional structure (primary and additional processes), information structure, user interface and information system modelling.

4. Network operating system on the basis of MS Windows and Novell (14 hours of lectures and 14 hours of laboratories). Aim of the classes: to make the auditors familiar with modern solutions offered by such network operating systems like MS Windows and Novell NetWare. Among the topics of discussion there will be communication standards in computer networks, available network devices and cabling topology.

5. Network operating system on the basis of Linux (14 hours of lectures and 14 hours of laboratories). Aim of the classes: to prepare students to effective using of Linux operating system, starting from the basics like distributions’ type comparison, OS and applications installation and maintenance, console navigation.

6. Web pages designing (14 hours of lectures and 14 hours of laboratories). Aim of the classes: to familiarize attendees with the newest standards concerning web page designing, HTML language obligatory specification, CSS technology, and PHP programming script language. In the scope of the subject there are the newest methods of creation, testing and updating web pages.

7. Computer programming (8 hours of lectures and 12 hours of laboratories). Aim of the classes: to introduce visual, object and event oriented programming constructions and their usage in the process of autonomous application building in the integrated programming environment like Delphi. Students will learn how to use the most important components of Delphi in order to design advanced user forms which are able to process graphic, numeric and text data.

8. Database systems (8 hours of lectures and 12 hours of laboratories). Aim of the classes: to introduce the theory and practical issues concerning designing of database systems.
Students are obliged to learn SQL language. The main task of this course is to give the students a possibility to get practical skills of creating database systems in MySQL. In details, they are learning how to define database scheme, tables, queries, perspectives, reports, etc. They are mastering in the most important SQL language elements and methods of database securing and administrating.

9. Programming in SQL language (6 hours of lectures and 6 hours of laboratories). Aim of the classes: to prepare auditors to manage relation database systems using SQL language.

10. Physical phenomena and processes modelling (8 hours of lectures and 10 hours of laboratories). Aim of the classes: to make attendees of the course familiar with basics of modelling certain phenomena and physical processes that appear in the environment. It is necessary to demonstrate physical basics and laws which are specific for heat exchange and electric field. Methods of making electrical and thermodynamic models will also be introduced.

11. Diploma seminar.

In September 2009 the enrolment for new course had been announced, which was Renewal Energy Sources studies. During 224 hours of theoretical and practical classes students are obliged to complete following subjects:

- Renewal energy sources;
- Wind power engineering;
- Cooperation between renewable energy sources and energy storages;
- Integrated systems of solar and geothermal energy;
- Industrial devices powered by the solar energy;
- Restrictions of economy, ecology and law in renewal energy sources technology;
- Autonomous renewal energy sources dedicated to supply habitable buildings;
- Technologies of extracting and processing biomass and biogas;
- Designing of electrical and heating installations supplied with renewal energy sources;
- Small hydro power plants;
- Diploma seminar.

At the beginning of April 2009 first group of students started their 3-month practices in companies located along the region. In 2009 one hundred students took part in such practices programmes. It has to be underlined that there were much more candidates, however the number of vacancies was limited. Among graduates of this programme over 40 per cent had been proposed to continue cooperation with the companies they had practice before. In 2010 the number of applications to the programme also had been greater that expected. Unfortunately it had to be limited to 69 students. This year not only students but also employers are particularly interested in the project. More than a hundred companies declared their willingness to cooperate in future. Until now only one company refused its partnership.

In order to develop graduates competences and prepare them to enter the labour market the LUT Career Advisory Unit organise additional courses for students. Those trainings are not located in the main course curricula and consist of three thematic parts: integration and team building, competence management and autopresentation during job interview. Statistics made at the end of 2009 reveals that until then 390 students have taken part in mentioned trainings. Nonetheless it is planned to train totally 600 students until the end of 2010.

A very important element of the project is the series of supplementary classes aimed at first-grade students who have problems with passing maths and physics exams at the beginning of their courses. A lot of students from all faculties and courses were significantly interested in attendance to the additional lectures. Unfortunately, it was impossible to ensure this form of education to all interested students. As it is shown in the graph below (Fig. 1.), in the 2008/2009 academic year 518 students attended the classes. Among them were 68 students of Electrical and Information Engineering Faculty. In this academic year there are 469 attendees and 51 students of Electrical and Information Engineering Faculty among them. It has to be underlined that described project positively affected the process of education, because about 80 per cent of students who attended additional lectures have passed their maths and physics exams.

![Fig. 1. Number of students attending the supplementary classes in comparison between the whole Lublin University of Technology and Electrical and Information Engineering Faculty](image)

Conclusions

As the conclusion it should be assumed that the project Modern Education – development of university’s didactic potential have been introducing added value into a lot of aspects, fields and activities in the structure of Lublin University off Technology. An education offer has been enlarged by starting a lot of new courses, which made studying at LUT more attractive. What is more, a new perspective has been created for those academics, who want to improve their didactic qualifications and language skills. Simultaneously many students-involving activities have been introduced. Young people now have the opportunity to gather practical knowledge concerning methods of job searching and get necessary experience before graduation. This experience could help
the students in better understanding theory acknowledged in the standard process of education. As the result it is possible to notice positive changes in the students’ attitude to their University. It is supposed that those changes will spread as long as the project will be continued.

References


Received 2010 04 28