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Introduction 

 
The development of advanced power electronic 

switching devices such as insulated bipolar transistor 
(IGBT’s) has enabled high frequency switching operation 
and has improved the performance of the pulse-width 
modulated (PWM) inverters of the adjustable speed drives 
(ASD’s). However, the use of high frequency switching 
power semiconductors induces fast voltage and current 
variations (dv/dt and di/dt) and unavoidable parasitic 
capacitances witch cause the following problems: 
• ground current escaping to earth through stray 

capacitors inside motors [1]; 
• bearing current and shaft voltage [2–10]; 
• motor over-voltage problems [11–13] and shortening 

of insulation life of motors and transformers [14]; 
• conducted and radiated electromagnetic interference 

(EMI) [13–25]     
Common-mode voltages and common-mode currents 

generated by PWM frequency converters have been 
identified as a major cause of adverse effects in 
applications of PWM ASDs [3–7]. Bearing currents are the 
major cause of premature bearing failure in high-frequency 
PWM inverter-fed induction motors.  The bearings are not 
in electrical contact with the inner and outer races because 

the grease used has a partial insulating effect. Therefore, 
the charge accumulates on the rotor assembly until it 
exceeds the dielectric capability of the bearing grease. The 
resulting effect is a frequently repeated flashover current 
that in time can damage the bearing surfaces due to the 
electric discharge machining (EDM) effect, or 
electroplating of the race steel and bearing ball (pitting and 
fluting) [3-6]. (Fig. 1) shows the advanced fluting on a 
bearing race [4]. 

 

 
Fig. 1. Surface roughness of a ball bearing race due to electrical 
fluting 
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Step change in voltage/current produces higher 
electromagnetic (EM) noise mainly at the switching 
frequency and its harmonics. The emitted energy 
amplitude increases as a function of the peak current. 
These emissions are especially dominant in the long-wave 
(LW)/AM radio range [12–13]. These emissions are 
noticeable and can appear as distinct tones at the output of 
the radio [16–17]. 

Several mitigation techniques have been proposed to 
reduce the common-mode voltages and EMI generated by 
conventional three-phase PWM inverters. Among these 
techniques, the dual-bridge inverter (DBI) topology has 
proved to be effective in eliminating the common-mode 
voltage and motor bearing currents, as well as reducing the 
conducted EMI [7–10]. 

The DBI approach is based on feeding a suitably 
connected double-winding motor by two parallel inverter 
units having opposite polarities. In [10] the experimental 
results show that both the capacitive and induced shaft 
voltages are reduced by more than 80%. The remaining 
capacitive shaft voltage originates from the common-mode 
voltage generated by the rectifier. This voltage cannot be 
compensated by the DBI approach. The remaining induced 
shaft voltage is a result of non simultaneous timing of the 
PWM pulses of the inverter units. The common-mode 
current in the input cable of the converter is also 
effectively reduced, decreasing the conducted EMI. 
Simulations were carried out in [10] to investigate the 
effect of a time delay between the PWM pulses of the 
parallel inverter units. In the investigated drive, a delay as 
short as 15 ns caused the remaining common-mode current 
and induced shaft voltage. 

This paper presents an improvement of the works 
described in [7–10]. The proposed technique employs DBI 
approach with a perfectly symmetrical switching 
configuration. The major contributions are:  
• no need to additional gate drivers; 
• the delay between the PWM pulses of the parallel 

inverter units reduced practically to less than 1ηs; 
• notably reduction of radiated EMI. 

 

 
Fig. 2. Conventional PWM inverter-fed induction motor drive 

 
Common-mode voltage generation in a three-phase 
PWM inverter 
 

Conventional three-phase PWM inverters consist of 
three legs and six switches (Fig. 2). 

The common-mode voltage is defined as  
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Therefore the conventional inverter generates a non-
zero common-mode voltage and current. In (Fig. 3), a 
switching pattern is shown where it can be observed how 
the common-mode voltage is generated. This voltage is 
obtained by applying the equation (1). As a consequence, a 
usual three-leg inverter can not have an output CM voltage 
equal to zero. 

 

 
Fig. 3. Common-mode voltage generation in a PWM inverter 
 
The dual bridge inverter approach 

 
The prerequisites for a drive to be suitable for the 

DBI approach implementation are an even number of 
parallel inverter units in the frequency converter and an 
even number of parallel branches in the stator winding of 
the motor [7-10]. A conventional stator winding with two 
parallel branches is shown in (Fig. 4, a) For the DBI 
approach, the winding is divided into two separate three-
phase windings, and the polarity of one of the windings is 
inverted, as shown in (Fig. 4, b) an inverter unit feeds each 
winding. In each switching, the corresponding phases of 

; 
 
           ; 
 
            ; 
 
 .   
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the inverter units are connected to opposite DC buses, as 
illustrated in (Fig. 5) Thus the differential-mode voltages 
are equal in the corresponding branches of the two 
windings, but the common-mode voltages are the opposite 
and their sum vanishes [7-10]. The common-mode voltage 
is defined as: 

     ' ' '
1 ( )
6co m a b c a b cV V V V V V V= + + + + + . (3) 

To eliminate the common-mode voltage Vcom the 
inverter is designed and controlled such that: 

       ' ' ', ,a a b b c cV V V V V V= − = − = − .  (4) 

The output bridges and relevant switching strategy 
are shown in (Fig. 5) [7, 9, 10]. For example, when T1 is 
on, T4 is off and due to the reversed triggering signal to the 
second bridge, T1’ is off, T4’ is on, and therefore: 

       ' ' '0, 0, 0a a b b c cV V V V V V+ = + = + = . (5) 

 This will be the exact inverse for the condition of T1 
off and T4 on, where Va= V- and Va'=V+.  

The subsequent switches will operate in a similar 
pattern such that in all we will have the common-mode 
voltage equal to zero: 

  ' ' '
1 ( ) 0
6co m a b c a b cV V V V V V V= + + + + + = . (6) 

The absence of the common-mode voltage will 
preclude the electrostatic coupling between the rotor shaft 
and frame (ground). Therefore, the shaft voltage and 
resulting bearing current will be eliminated. 

(Fig. 6, a) illustrates the common-mode current in a 
conventional inverter unit. (Fig. 6, b) illustrates the 
common-mode currents when the DBI approach is used. In 
the DBI approach, the common-mode currents are the 
opposite and their sum vanishes. 

Experimental results of the dual bridge inverter 
approach implemented in a 1.4 MW cage induction motor 
drive have been described in [10]. (Table, 1) sums up the 
measured maximum peak values of the investigated 
quantities. The reduction of the peak values, obtained by 
using the DBI approach, is presented in the rightmost 

column. All relevant quantities were reduced by more than 
80% [10]. 

Table 1. Results of conventional and DBI inverter connections 
(maximum peak values) [10]. 

 Shaft Voltage (V) Common-mode Current (A) 
Induced Capacitive Motor Cable Input Cable 

Conventional 51.5V 60V 49A 12.5A 
DBI 10V 10V 7.5A 1.5A 

Difference in % −81 −83 −85 −88 
 

 
                     a)                                    b) 

Fig. 4. Winding arrangements: a – conventional two-branch 
winding;  b – winding connected for DBI approach 
 
The perfectly symmetrical switching configuration in 
dual-bridge inverter topology 

 
From (Fig. 5) it is clear that (T1, T4’) have the same 

triggering signal, in consequence the gates of (T1, T4’) can 
be connected together. The same remark can be observed 
for (T2, T5’), (T3, T6’), (T4, T1’), (T5, T2’) and (T6, T3’). The 
perfectly symmetrical switching configuration in the DBI 
topology, shown in (Fig. 7), takes advantage of these 
remarks. With this configuration (Fig. 7), no need for 
additional gate drivers and the time delay between the 
PWM pulses of the parallel inverter units can be reduced 
practically to less than 1ηs. The DBI topology has proved, 
by simulation and experimental validation, in [7-10], to be 
effective in eliminating the CM voltage and motor bearings 
currents, as well as reducing the conducted EMI. However, 
the radiated EMI in DBI approach has not been discussed. 
With the configuration of (Fig. 7) notably reduction of 
radiated EMI can be obtained. 
 

 
 

 
Fig. 5. Proposed PWM dual-bridge inverter drive in [7, 10]
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a) 

 
b) 

Fig. 6. Common-mode current paths: a – conventional inverter; b 
– DBI approach (I cmB = −icmA) 
 
Verification by simulation 

 
In this section, the verification by simulation of the 

effective reduction of radiated EMI in DBI approach using 
the perfectly symmetrical switching configuration is 
presented. For this purpose equivalent loop antennas have 
been used [26, 27].  

As shown in (Fig. 8, a), two circular-loop antennas 
positioned symmetrically on the x-y plane, respectively, at 
z=0 and z=d. The wire is assumed to be very thin, the 
radius of the loop a<<λ, λ the wavelength, and the current I 
is taken constant along the loops.  

For the circular loop antenna of (Fig. 8, b), in near 
field region (kr<<1, with k=2π/λ), the magnetic field 
component can be expressed as [26, 27]: 

θθ sin
4 3
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            0Hϕ = .       (9)  
Thus the amplitude of the magnetic field is 
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The field radiated by the two loops (Fig. 8, a) was 
investigated by means of computer simulations. In the 
simulation the distance d between the loops was varied and 
the magnetic field reduction in % was observed. 

 

 
Fig. 7. Proposed perfectly symmetrical switching configuration in 
the DBI topology 

 

 
  a)      b) 
Fig. 8. Geometrical arrangement for the circular-loop antennas 
 

Simulated magnetic field reduction as a function of 
the distance between the two loops is shown in (Fig. 9). 
The field was observed at (z=1m, y=0m, x=-0.2 to 0.2m). 
It was found that a distance between the loops less than 
5cm can reduce the radiated field by more than 90%. 
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Fig. 9. Simulated magnetic field reduction (in %) as a function of 
the distance between the two loops (in cm) 
 
Conclusions 
 

In this paper, we presented an improvement of the 
DBI approach. The proposed technique employs DBI 
topology with a perfectly symmetrical switching 
configuration. The major contributions were: 
• no need to additional gate drivers; 
• the delay between the PWM pulses of the parallel 

inverter units reduced practically to less than 1ηs; 
• notably reduction of radiated EMI. 

Verification by simulation of the effective reduction 
of radiated EMI in DBI approach using the perfectly 
symmetrical switching configuration was presented. The 
near field radiated by two circular current loops was 
investigated by means of computer simulations. A notably 
reduction of radiated EMI was verified. 
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