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Introduction 
 

This article presents a few practical results obtained 
by testing a specific hardware architecture based on one of 
the most popular operating systems, Linux. We also added 
a real time extension to see if it suits the demands of a 
Hard or Soft real-time system. 

Real-time systems are a bit different from the 
classical ones because they have to offer a certain response 
within a specified time period. With real-time systems, 
correct execution of tasks will depend not only on the 
correctness of the results but also on the time when they 
are provided. Unlike soft real-time where deadline miss is 
not a major problem, missing a time constraint in a hard 
real-time system can cause severe material damage or even 
human health injury [5],[10].  

For this reason, real-time systems issue must be 
analyzed accordingly. Real-time system design is often a 
great engineering challenge because a lot of factors within 
the system can modify significantly its stability. 
Depending on the application, one can go for a hard real-
time controller if deadlines must always be satisfied or for 
soft real-time if the application allows missing the time 
limits . 

Depending on the possibility of adding new tasks at 
runtime, operating systems can be classified as static or 
dynamic. 

If static operating systems are frequently associated 
with hard real-time, we cannot say the same for dynamic 
operating systems. In the first case, a predefined number of 
tasks are created at compile time without the possibility of 
adding new tasks when the system is up and running. 
Dynamic operating systems do allow insertion of new 
tasks during runtime, so there is no need of stopping, 
recompiling, reprogramming and restarting the devices. 
From this point of view, the execution speed is in inverse 
ratio to the scalability of task execution, and searching for 
the optimal solution is a main task for system designers.  

The main destination of Windows or Unix like 
operating systems aims to Desktop computers, graphical 
stations, workstations, mainframes. They are not for 

industrial usage. We must emphasize that this huge 
computing power of the previous mentioned machines 
does not imply real-time execution as compulsory 
regulation. Lately, engineers made considerable efforts to 
classify those operating systems in the hard real-time 
domain but their behavior shows that they are not the best 
choice for industry  embedded controllers. 

This paper shows some practical results of tests that 
were conducted on a custom hardware platform to point 
out the system performances, jitter analysis, and whether 
they can be classified as hard or soft real-time. Jitter is a 
key element in evaluating system performance and real-
time capabilities. That is why we will insist on this topic in 
the following pages. The paper consists of three main 
parts: theoretical background of real-time scheduling, 
architecture description and test case where practical 
results will be evaluated and finally, there are the 
conclusions. 

RTAI (Real Time Application Interface) is a Free 
Software project developed in the Department of 
Aerospace Engineering of Politecnico di Milano(DIAPM) 
by a team of engineers coordinated by Professor Paolo 
Mantegazza. RTAI runs under Linux kernel space and due 
to its integrated scheduling policies it allows real time 
applications to be executed in a preemptive hard real-time 
environment [2]. RTAI can run both in single and 
multiprocessor environments [4],[8]. The RTAI Official 
Website provides the latest versions of software, API 
documentation and additional information for project 
development. RTAI supports several hardware 
architectures: x86 (with and without FPU and TSC), 
x86_64, PowerPC, StrongARM, ARM7, and a few chips 
from Cirrus Logic and Intel. 

Similar testing has been performed by Eng. Peter 
Laurich, founder of Akamina Technologies. In his article 
“A comparison of hard real-time Linux alternatives”, he 
evaluates the performance of native Linux and Linux with 
RTAI for a high performance hardware platform. Most of 
the benchmarks and testing done until now aimed at high 
performance processors that go with desktop computers, 
workstations, servers and other expensive computing 
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platforms. The intention of this paper is to provide 
performance evaluation results for a custom hardware 
platform that uses one of the most used processors in 
multimedia, gadget and industrial applications, the 
ARM920T processor. 
 
Mathematical model of a real-time task 
 

Tasks are the main entities that are executed in a real-
time operating system. They can be periodic or aperiodic 
and they may have time restraints [5, 6]. 
 

 
 
Fig. 1. Task main parameters: r  – release time (periodic or event 
triggered); C – worst case execution time; D – task relative 
deadline; T – task period (specific only to periodic tasks) 
 

If a task has a real-time constraint, then we can also 
talk about the absolute deadline, which is described by: d = 
r + D. Missing the deadline d determines a miss of a time 
constraint that is imposed for that task, which represent a 
major fault for real time systems. All four parameters 
mentioned above are present in case of periodic tasks but T 
is missing for the aperiodic ones. For aperiodic tasks, 
successive release times are of the following form: rk 
=r0+kT where r0 is the time of the first release and rk is the 
execution with sequence number k+1. Absolute deadlines 
are described by the equality dk=rk+D ; if D=T then the 
maximum admitted execution time (deadline) is equal to 
the period. A task is well formed if the expression 0<C≤D 
≤T  is true [1].  

The following parameters that are derived from the 
above relationship are presented below:   
-u = C/T is the processor utilization factor for a running 
task and must always be equal to or less then 1  
-ch = C/D is the processor load factor and must always be 
equal to or less then 1: 

− s is the start time of task execution; 
− e is the finish time of task execution; 
− D(t)=d-t is a residual relative deadline at time 

t:0≤D(t) ≤D; 
− C(t) is the pending execution time t: 0≤C(t) ≤C; 
− L=D-C is the nominal laxity of the task and 

specifies the maximum lag for the start time s 
when it has sole use of the processor. 

Sometimes periodic requests must have fixed start 
times and response times. The difference between the start 
times of two consecutive requests, si and si+1 is the start 
time jitter. The maximum jitter or absolute jitter is defined 
as |si+1-(si+T)| ≤Gmax . The maximum response time jitter 
is defined in the same manner [1]. 

The processor utilization factor for a set of n periodic 
tasks has the following expression 
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The processor load factor for a set of n periodic tasks 
can be evaluated using the following expression 
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Because of the deadlines, neither the load factor (2) 
nor the processor utilization factor (1) is enough to 
evaluate an overload effect on timing constraints. 
Additionally, the processor laxity parameter LP(t) was 
introduced and it represents the maximal time the 
processor may remain idle after t without causing a task to 
miss its deadline. Furthermore the processor idle times are 
the intervals where the processor laxity is strictly positive 
[1]. 
 
Rate monotonic algorithm 
 

If we had to make a scheduler taxonomy of the 
selected software environment, we can say that it has the 
following characteristics: on-line centralized scheduling, 
preemptive environment and fixed task priority. The rate 
monotonic algorithm was taken in consideration for 
analyzing periodic tasks behavior in the test system. For a 
set of periodic tasks, assigning the priorities according to 
the RM (Rate Monotonic) algorithm means that tasks with 
shorter periods get higher priorities. For a RM algorithm, 
the worst case scenario is to have all the tasks from a task 
set triggered at once (r0=r1=r2=…=rn=0).  

Considering two tasks, t1 and t2 with T1<T2 and 
D1=T1, D2=T2, it is possible somehow by mistake to 
assign a higher priority to the task with the shorter period. 
In this case it is important that the inequality C1+C2 ≤ T1 
to be satisfied [1]. If the correct assignment of priorities is 
done, and considering β=T2/T1 the number of periods of 
task t1 entirely included in the period of t2, then the 
following statements are correct: 

 

C1 + C2 ≤ T1 => (β +1) · C1+ C2 ≤  T2 ,  (3) 
 

C1 + C2 ≤ T1 => β · C1 + C2 ≤  β ∙ T2  .  (4) 
 

Statements from (3) and (4) show that if the schedule 
is feasible by an arbitrary priority assignment, then it is 
also feasible by applying the RM algorithm. Schedulability 
test for this algorithm implies determining the upper bound 
Umax processor utilization factor. For the same tasks 
mentioned above this is determined by using relation (5) 
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The generalized result for a set of n periodic tasks is 
done using the following relation 
 

 U = ∑
=

n

i i

i

T
C

1

≤ n·(21/n-1).   (6) 

 

Due to priority assignment based on task periods, the 
RM algorithm performs well for tasks where relative 
deadlines are equal to periods. The condition (6) is 
sufficient for processor utilization factor [1]. 
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Performance characteristics of Linux RTAI based 
systems 
 

Since Linux tasks present a variable jitter of 
unaccepted values, embedded systems built using this 
operating system are not real-time. To improve system 
performances and for adding real-time support RTAI 
extension was taken in consideration [2].  

RTAI was built as additional part for Linux and can 
be executed both in kernel mode as well as user space. 
With RTAI, engineers can create tasks that run in the 
kernel address space with a higher priority than the kernel 
itself. Usually, the kernel is assigned with the lowest 
priority in the system and, by means of scheduling policies, 
the RTAI dispatcher is able to execute higher priority or 
greater urgency tasks. 
  
Test equipment description 
 

Since RTAI does not provide hardware support for 
the new ARM920T based chips integrated by Cirrus Logic 
we decided to use the Adeos Patch file for 2.4.26 kernel 
provided by Technologic Systems that came with the TS 
7300 test board. New kernel support for the specified 
architecture is still in progress. 
For testing we used the following software and hardware 
tools: 
HARDWARE 
- Technologic Systems TS7300 test board with the 

following components:  
- EP9302 Cirrus Logic Processor (ARM920T 

at 200MHz); 
- 32 Mbytes Samsung SDRAM; 
- Peripherals: IO ports, USB port, JTAG, 

CAN, USART;  
- Real time clock; 
- Altera CycloneII FPGA directly 

programmable from Linux; 
- SD card storage; 
- PC104 expansion slot. 

- Power supply. 
- 5 port Ethernet Switch. 
- Compact Flash programmer. 
- Tektronix TDS2024B oscilloscope. 
SOFTWARE 
For the development board: 
- Linux Debian operating system; 
- 2.4.26 Kernel; 
- Adeos Patch for Technologic Systems; 
- RTAI version 3.2; 
- GCC 3.3.4 compiler for ARM; 
- Glibc 2.3.2 libraries for ARM; 
For PC development: 
- Red Hat Linux 9.0; 
- Cross compiler for ARM; 
- 3.2.2 GCC compiler (Red Hat Linux 3.2.2-5). 
 
Preparing the test environment 
 

Preparing the test environment implies a series of 
steps that are described next. The order in which they are 
written is important. 

Crosscompiler build. This step implies downloading 
and compiling of crosstool-0.28. For this 
LD_LIBRARY_PATH variable must be initialized with a 
null string and then from the file “demo-arm.sh” the line 
“cat arm.dat gcc-3.3.4-glibc-2.3.2.dat sh all.sh -notest” 
must be uncommented. Compilation is initiated using 
“./demo-arm.sh” command. 

Installation of modutils-build. This is done according 
to the following procedures: 
- The package must be decompressed using “tar –

jxvfmodutils-2.4.26.tar.bz2”command. 
- Installation script is configured using: 

“../modutils-2.4.26/configure –prefix=/home/user/… --
target=arm-unknown-linux-gnu”. 

- Export necessary system variables 
“Export PATH=/opt/crosstool/arm-unknown-linux-
gnu/gcc-3.3.4-glibc-2.3.2/bin:$PATH”. 

- Install with “make” and “make install” commands. 
Apply ADEOS patch. This patch is a chunk of low 

level code that is used to build the hardware abstraction 
layer between Linux and the hardware platform on which it 
runs, in this case, the EP9302 processor. 

The patch is applied in the following steps: 
- “tar –zxvf linux24-ts8-kernelsource.tar.gz”; 
- “cd linux24”; 
- “patch –p1 <cale-catre-

adeos/ts72xx_ts8_adeos.patch”. 
Kernel compilation. Using the new crosscompiler 

obtained in the previous step, the kernel is compiled for 
ARM architecture. First, it is extracted from the containing 
archive using “tar –zxvf tskernel-2.4.26-ts11-src.tar.gz” 

The variable CROSS_COMPILE must be set to “arm-
unknown-linux-gnu-” in the makefile. Depmod must also 
be set to “Export PATH=/opt/crosstool/arm-unknown-
linux-gnu/gcc-3.3.4-glibc-2.3.2/bin:$PATH”, and next, the 
kernel build is done by means of the following statements: 
- “Make ts7200_config”; 
- “Make oldconfig”; 
- “Make dep”; 
- “Make vmlinux”; 
- “Make modules”; 
- “Make modules_install”. 

This last command also builds the modules that will 
be used further with the kernel. 
 
Experimental results 
 

This section contains the experimental results for the 
jitter and preemption latency test cases. The test programs 
are compiled on a desktop PC with the same compiler that 
was used for kernel building since using a different 
compiler will trigger an “insmod“ error when trying to 
insert the test module into the kernel address space. For 
maximum efficiency, we used RTAI as a kernel module 
and for that reason test programs were compiled also as 
kernel space modules. Thus, we were able to test the real 
power of Linux when it comes to dynamic scheduling. 
Each of the test modules, including RTAI, can be inserted 
during runtime without the need to restart the machine 
which brings a major advantage as compared to other 
operating systems since the machine’s uptime is not 
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affected. Anyway, writing kernel modules requires 
following the same strict rules of coding that are used in 
device drivers [9]. Time intervals were measured using a 
pin toggle method and because access to pin data registers 
is not possible using pointers, a call to “request_region()“ 
was necessary. This function receives as parameter the 
starting address of the memory region to be used and an 
offset in bytes that specifies the size of the region. The 
time intervals are measured using a Tektronix 2024B 
oscilloscope synchronized on the rising edge of the signal 
(Fig. 2). This measuring instrument allows keeping on the 
screen all the variations of the signal in a specified time 
interval as this can be seen for the falling edge from Fig. 2. 
The measuring instrument also provides information about 
the period and the frequency of the signal between the two 
cursors. Each test was performed for about 30 minutes to 
have enough time to see the jitter variation, but even 
though this time interval is big enough, the values obtained 
herein will not show the worst case scenario.  
 
Jitter test case 1 – idle CPU 

 
This test shows the jitter of a 300 µs recurrent task 

when the processor is idle for most of the time (Fig. 2). In 
the picture, the main 300 µs rectangular waveform that 
actually defines the task execution time is represented with 
high intensity yellow, and the jitter is low contrast yellow 
near the falling edge of the signal. Since the worst case 
value for this test is 22 µs, the jitter is at most 7,4% from 
the task’s main period because, even if we consider that the 
CPU is idle, it still runs the scheduler and some system 
services. 
 

 
 
Fig. 2. Jitter for idle CPU 
 
Jitter test case 2 – full load CPU 

 
What is really important is to see how the system 

performs when high CPU consumer tasks need to be 
executed. Tasks with intensive DMA accesses, Ethernet 
traffic, memory page swapping and disk or compact flash 
accesses are only a few examples of high CPU consumer 
applications. From the above mentioned “ping –f” 
command performs just well by keeping the CPU in full 
load. Actually, the system sends ICMP packets in bursts 
without waiting for a response from the target interface. 

The results for this second test case are presented in Fig. 3. 
As we may observe in this situation, the jitter has a bigger 
value than in the previous case. The worst case jitter value 
obtained here is 100 µs, and this actually represents about 
33% from the expected 300 µs period of the task. We will 
make a few comments about this result in the conclusions 
section of this paper as this isn’t what we had expected. 
 

 
 
Fig. 3. Test case 2 jitter - full processor load 
 

Using the same test cases, we performed a few 
measurements for different task periods. The results are 
shown in Table 1. 
 
Table 1. Jitter values for different task periods 

Task  period 
(µs) 

Minimum jitter 
value (µs) 

Maximum jitter 
value  (µs) 

300 3 100 
500 2 92 

1000 2 80 
2000 2 72 
5000 2 66 

10000 2 94 
 
Preemption latency and task switch time test case 
 

Preemptive multitasking allows embedded systems to 
be more reliable when it comes to catching and processing 
external asynchronous events. Unlike cooperative 
scheduling, each task can be interrupted from its activity 
by a higher priority task and this is a major advantage as 
external asynchronous events can be processed in real-time 
by dedicated software routines in the same processor 
system. In a real-time system it is very important to keep 
the preemption latency to minimum. All the extra delay 
will finally consume useful time from the task execution 
interval. Control is not passed instantly to the task which is 
responsible for exception processing, and this can be seen 
in Fig. 4. 

Tex is the time when the external event first signals 
the control system. After a very short time, when the 
vectored interrupt controller provides the address of the 
service routine, control is passed to the code from ISR at 
time Tisr. The task that computes the external event 
request will not take control until a context switch is 
performed at Tcs. This action saves the context of the 
running task (internal processor registers and the program 
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counter) to a stack, and gives control to the new task that is 
elected by the scheduler.  

 

TIME

VIC response ISR Context switch Task execution

External 
event

Start of 
control task

Interrupt latency Ti

ISR start
OS 

notification

Tex Tisr Tcs Tex

 
 
Fig. 4. Preemption latency intermediary states 
 

EP9302 processor has 4 timers that can be used for 
time measurements but certain aspects determined us to 
use the pin toggle method. Three of them are sourced by a 
508 KHz clock and the fourth by a 983.04 KHz reference, 
which gives us a resolution of about 1.96 µs and 1.01 µs 
respectively. This time resolution is good enough but 
because reading timers requires additional processing time, 
the decision was to use the oscilloscope measurement. 

The test environment is built using the same hardware 
tools as in the previous tests, but additionally, a rectangular 
wave generator was added. This is used to trigger an 
interrupt using a 1 KHz rectangular signal that is applied 
on a pin with interrupt generation possibility. A task is 
programmed to answer the external event by toggling 
another IO pin from the same expansion connector of the 
test board. Both signals are recorded simultaneously using 
two probes, and the lag between the rising edges of the two 
rectangular pulses represents the latency we intend to 
measure (Fig. 5). 

 The last test case is performed to make a few 
observations on the task switch time for the proposed 
hardware/software architecture. As mentioned before, 
passing control to a higher priority tasks requires 
intermediary steps that have as main goal to save the 
context of the interrupted task to a stack. 

Testing was performed in the same manner for full 
and minimum load processor for a range of input 
frequencies between 10KHz and 500Hz. The results are 
presented in Table 2. 
 
Table 2. Preemption test latency for minimal and full load 
processor 

Stimulus signal 
frequency 

(Hz) 

Minimum load 
(µs) 

Full load 
(µs) 

500 42 42 
800 40 42 
1000 40 42 
5000 42 44 
8000 39 43 

10000 41 44 
 
Table 3 presents the results of the task switch time from a 
low priority to a high priority task.  
 
Table 3. Task switch times for different processor loads 

 Minimum load (µs) Maximum load (µs) 
min 28 30 
max 32 38 

Fig. 4 shows that interrupt latency takes a bit more time 
because of the hardware response and the ISR execution 
that happens before the context switch to the new task that 
will serve the external request. In this situation, the total 
time of the interrupt latency is Ti=Tex+Tisr+Tcs. On the 
other hand, the task switch time will only execute the 
context swapping (Tcs) and this can easily be seen by 
comparing results from Table 2 and Table 3. Depending on 
the hardware architecture, this process of context saving 
can spend less or more time. Practical results showed us 
that the ARM920T processor can produce impressive 
throughput with over 309 Mbytes/s at 200MHz core clock 
using block transfer STMIA instructions. That is why 
overall system performance depends on both the hardware 
architecture and the way the software is built. 
 

 
 
Fig. 5. Interrupt latency. The yellow is the input stimulus signal 
and the blue one is a small task that is triggered by the pin status 
change ISR. The task is triggered both on the rising and the 
falling edge of the input signal depending on the actual 
configuration of the interrupt associated with that I/O pin.  
 
Conclusions 
 

As mentioned in the introductory part of the paper, 
high level operating systems do not have the best suited 
performances for real time applications. Even though, we 
showed that the proposed hardware and software 
architecture can obtain good raw performance as compared 
to other operating systems from the same category (e.g. 
Windows). 

Generally, a Windows Mobile based embedded 
device cannot go down below 1 ms resolution. Obtained 
results are way better than the previous mentioned value 
and the order of magnitude is with at last one order smaller 
than the Windows systems. As we see in the test case 2, 
the jitter at full processor load has a tendency to drop as 
the task period increases. For the first value in the Table 1 
the result is not satisfactory since the jitter value is at most 
33% from the task’s main period. Thus a 300 µs task 
would often become 400 µs in width possibly delaying 
other important processes in the system. With high 
frequency real-time systems this is not acceptable. As for 
the larger period tasks, the jitter seems to be acceptable as 
long as it will not exceed the values imposed by system 
designers. Depending on the application, this system may 
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be used as a hard real-time controller, but it couldn’t be 
used for controlling an anti-lock brake system because of 
the high jitter of the low period tasks. Since any hard real-
time control system is without doubt better than a soft real-
time controller, the system can be used without problems 
with soft real-time control. Taking in consideration the 
proposed hardware architecture with its 200 MHz 
processor the overall impression is good. By using this, 
one may benefit from the high level services offered by 
Linux, file systems, MMU, software tools, as well as the 
real time performance that comes with RTAI. As a future 
work, we will try to add some new improvements to real-
time system performance using cache locking mechanisms. 
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