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Introduction

Linear systems are of fundamental importance in
many engineering applications. Linear time-varying
systems in comparison to linear time-invariant ones have
important advantages when the signals are modelled or
processed nonstationary [1]. Moreover linear time-varying
systems are powerful tools for processing nonstationary
random processes. On the other hand quantum physics and
time-frequency signal theory are strongly interrelated fields.
The phase space of physics (momentum and position) plays
similar role in quantum mechanics as the time-frequency
plane in signal theory (time and frequency) [2].

In order to describe dynamics of time-varying
discrete-time systems one can use difference equations with
time-dependent coefficients or a generalized description
employing state equations with time-dependent matrices

x(k+1)=A(k)x(k)+B(k)v(k),
y(k)=C(k)x(k)+D(k)v (k).
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where Alk)e " B(k)e "Mk Clk)e PRk,
D(k)e pkxmk,x(k)eR"k’ V(k)eRmk, y(k)eRpk,
keZ.

Definition. State dimension sequence is defined for
each time sample and can be given in following way

n={nk:ke Ny € ,x(k)e "k}=
—[onlk-n(E)nlk+ 10k +2)..] @

Input and output dimension sequences are defined by
analogy.

Alternatively the description can be converted thanks
to general linear operators theory [3—6] and their
applications for discrete-time, time-varying systems [7, 8]
into a more general equation operator description.

Time-Frequency Transform

Frequency methods are well known tools applicable
not only for linear time-invariant systems, but also for
linear time-varying systems with [9-12].

Time-frequency methods are known for more than 60
years [13]. Many investigations has been made until now
e.g. [1, 2, 14-18]. The time-frequency transform is
formulated as parameterized extension of Laplace transform
and it is defined for continuous time systems

V(Z) v=ej27rﬁ

Zg (t.f)= ()

General form of the transform for continuous time
systems can be defined by following Generalised Weyl
Symbol [15]

—72
. ) = [h(t+(3-a)ri-(L+a)c)e 2 ar . (5)
T
where a € R is arbitrary real number, usually bounded
such that || <0.5 and /(1,4 ) is system response at time
t; for shifted by time #, Dirac impulse &§(z—1).
Depending on the parameter o we can distinguish 3
following forms of the time-frequency transformation:
- Time-varying Zadeh transfer function [13] for ¢=0.5,
- Frequency dependent modulation function [14] or
Kohn-Nirenberg symbol [19] for o=-0.5,
- Weyl symbol, taken from quantum mechanics [20] for
o=0.

Time-Frequency Transform in Discrete-Time

Equation (5) cannot be employed directly for discrete-
time. It must be converted e.g. using the Discrete Fourier



Transform (DFT)

£ (5. 17) = ]Zv:h(k+(%—a)n,k—(%-i—a)n)e_jz”l”w .(6)

n=1
where ¢ =T, f; :ﬁ, 1=0,1.. . N1, k=0,1,..,N.
p

For linear time-invariant systems on infinite time
horizon the time-frequency transform holds following

property

k’VmL(;)(fk»ﬁFL({x

Nt 1) ™)
It mean that the Generalised Weyl Symbol for LTI
systems is time invariant.
Discrete-time Kohn-Nirenberg symbol (for o=-0.5)
can be written in following form

By (t:.1) = L(T_OAS) (- /1) = % h(k+n,k)e‘f2”1"/N (8)

n=1

For arbitrary given k the Kohn-Nirenberg symbol is
computed from present and future system responses.
Discrete-time, time-varying Zadeh transfer function (for
0=0.5) can be written in following form

(0.5

N ,
Zi (40 ) = 55 (1 1) = X h (o= )2 (9)

n=l1

For arbitrary given £ the time-varying Zadeh transfer
function is computed from present and past system input —
requires knowledge about the past from current k. Discrete-
time analogy to the Weyl symbol (for o=0) can be written
either in the form known in the literature [21]

1) (4. £1)=2 3 h(k+nk-n)e 4N (10)

n=—0

For arbitrary given &k Weyl symbol is computed from
present, future and past system inputs and outputs —
requires knowledge about the past and future from current
k.

Above definition needs two times larger time horizon
in order to ensure the same accuracy as Kohn-Nirenberg
symbol and time-varying Zadeh transfer function. The main
reason is the multiplier 2 in (10). It mean that each value of
impulse response is taken 2 times.

Let us consider SISO system defined on finite time
horizon of length N and & equal to 0. The Kohn-Nirenberg
symbol is calculated on the basis of N element vector

[h(0,0),h(l,O),...,h(N—1,0)] which corresponds to

resolution in: discrete frequency of 1/N.
Discrete-time, time-varying Zadeh transfer function
calculated for the same conditions has also N element

[7(0,0),4(0,~1),...2(0,1-N)].  The

resolution in frequency domain is identical as for Kohn-
Nirenberg symbol.

Discrete-time Weyl symbol from eq. (10) calculated
also for /=0 and time horizon of length N has two times
shorter basis (N/2+1) for odd N

vector  basis

2
deterioration of the resolution in frequency domain (two
times larger).
The main reason of the deterioration is the fact that
using definition (10) large amount of information given in
the impulse response 4 (k; ,kz) is neglected. Especially the

[ 1(0,0),1(1,-1), h(2,-2),.... b4, 21 | 1t follows to

formula (10) does not take into computations impulse
responses with odd differences k; —k,. See for example

two bases for &=0 and /=1 and unused elements of impulse
response

N-1 =N+l
k=0 |M(00) h1) e (A=)
unused M
=1 h(2,0) h(25L, =23

Novel computation algorithm for Discrete-Time analogy
to Weyl symbol

Discrete-time computational algorithm of the Weyl
symbol given in [21] can be improved by taking into
consideration full information included in the system
impulse response A (ky,k, ).

In practise discrete time moments with fractional
indexes are directly infeasible, but they can be interpolated
from neighbour discrete time responses, see for example

1(1,0) 1(2.0)

h(1.5,0.5) (11)

h(1.1) h(2.1)

In that way responses with both even and odd

differences k| —k, are taken account in computation.

In order to take account impulse responses with odd
differences k; —k, fractional indexes elements will be

defined first.
Definition. Fractional index discrete time response
value of one variable %(k+0.5), k € Z is defined as linear

interpolation of / taken in following way

h(k+0.5)=0.5(h(k)+h(k+1)). (12)

Definition. Fractional index discrete time response
value of two variables A (k +0.5,/+0.5), k,l € Z is defined

as 2-D linear interpolation of 4 taken in following way

h(k+0.5,1+0.5)=
=0.25(h(k, 1)+ h(k +1,0)+ h(k,1 +1)+ h(k +1,+1)). (13)

Taking account eq. (6) following substitution holds

_ (14)
b =k+(%+a)n,12=ﬂoor(b), =b+],

where under-bar (floor) denotes round toward minus
infinity.
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Main difference can be seen in fig. 1 on example with
two impulse responses generated for the same system. The
system is low-pass FIR Butterworth 4™ order filter with cut-

off frequency Q_ =0.2. Integer indexes response mean the
response  i(k+n,k—n), whereas fractional indexes
response mean response 4 (k +0.5n,k - O.Sn) . In both cases

kis constant and »=0,1,2,.... N —1.
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Fig. 1. Selected impulse responses for fractional indexes (FI —
solid line) and integer indexes (I — dotted line) approximation

Magnitude

30

Having defined impulse responses with fractional
indexes the discrete-time Weyl symbol can be adopted
directly from (6)

Lo (1)) = 1) (4. 17) = ’%h(k +0.5m,k—0.5n)e /27N (15)

Discrete-time Weyl symbol from eq. (15) calculated
for /=0 and time horizon of length N has following basis

N-1 _N-1 :
[ 1(0,0),1(0.5,-0.5),h(1,=1),... (251, -254) | with
length N (for odd N).
1
=== |TH
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Fig. 2. Magnitude-frequency diagrams for fractional indexes (FI —
solid line), integer indexes (II — dotted line) approximation and
infinite horizon response (ITH — dashed line) for the same system

Taking account interpolation defined by eq. (13), the
second, fractional index term in the basis is equal to:
h(0.5,-0.5) =0.25(h(0,~1)+h(1,~1)+4(0,0)+A(1,0)) . In
this case the resolution in frequency domain is 1/N.

Differences in frequency domain can be seen in fig. 2.
The figure shows 3 different frequency diagrams calculated
for fixed k. Dashed line (ITH) shows classical magnitude-
frequncy spectra of the low-pass filter defined on infinite
time horizon. Dotted and solid lines show diagrams
calculated for finite time horizon of N=30 steps. Dotted line

draw frequency response for integer indexes impulse
response (10) whereas solid line draw frequency response
for fractional indexes response (15). Taking the dashed line
as the reference, significant improvement can be seen
between dotted line — far from the dahed one and the solid
one — close to the reference even for short time horizon (30
steps).

Conclusions

A new concept of fractional indexes impulse response
approximation for discrete-time, time-varying systems is
introduced. The concept can be successfully applied for e.g.
computation of Weyl Symbol as well as Generalised Weyl
Symbol. Using fractional indexes approximation allow to
use all elements of impulse response both with even and
odd differences between first and second variable index.
Resulting average accuracy is similar like integer indexes
methods Kohn-Nirenberg symbol with o =-0.5 that
focuses on the beginning of the time horizon and Zadeh
time-frequency transfer function with « =0.5 which
focuses of the end of the time horizon. In contradistinction
to two mentioned methods Weyl symbol o =0 allows to
focus the highest accuracy for the middle part of the time
window. Generalised Weyl symbol allow to choose other
value a €(-0.5,0.5), that additionally allows to focus the

highest accuracy on particular part of the time window.

Fractional indexes approximation allow to compute
Generalised Weyl Symbol for arbitrary real o« with
accuracy close to methods with o =+0.5 with the same
length of the time horizon.
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P. Orlowski. Fractional Indexes Impulse Responses Approximation for Discrete-Time Weyl Symbol Computation // Electronics
and Electrical Engineering. — Kaunas: Technologija, 2010. — No. 8(104). — P. 9-12.

Time-frequency transformations including definitions of the Weyl symbol and generalised Weyl symbol are well known tools for
linear time-varying systems analysis. Unfortunately known discrete-time analogy to Weyl symbol uses only half of the information
contained in the discrete-time system transfer operator (system impulse responses with even indexes differences are only taken account
for the computation). Moreover the method cannot be used for computation of the discrete-time analogy to generalized Weyl symbol. In
the paper a novel computation approach is proposed. First of all the concept of fractional indexes for discrete-time systems is
introduced. Secondly the algorithm for approximation impulse responses of the discrete-time system with fractional impulse responses
is proposed. Our method can be used for computation of the generalised Weyl symbol as well as for computing Weyl symbol based on
full information available in the discrete-time system transfer operator. Differences between the existing and the proposed computation
method for Weyl symbol are illustrated on the numerical example in the time domain. Ill. 2, bibl. 21 (in English; abstracts in English,
Russian and Lithuanian).

I1. OpsoBcku. IIpuOIMKEHHbIE BBIYHCIEHUS THCKPETHOTO CHMBOJIa Beiisisi Ha ocHOBe IPOOHBIX MHAEKCOB MMITYJILCOB OTBETA //
DJIeKTPOHHUKA U djleKkTpoTexHuka. — Kaynac: Texnonorus, 2010. — Ne 8(104). — C. 9-12.

B ananuse nuHEIHBIX HeCTAIIMOHAPHBIX CHCTEMaX IIMPOKO M3BECTHBI ONpEAeNIeHHbIEe N 0000meHHbIe cuMBOIIBl Beitna. OnqHako B
TaKOM aHaJM3€ MCHOJIB3YeTCs! TOJIBKO TTOJIOBUHA MH(POPMALUH U HE MOXKET OBITh MCIIOJIB30BAH ISl BEIYHMCIICHNS TUCKPETHOTO BPEMEHH
¢ 0000meHHbIM cuMBoiIoM Beiina. [Ipeanaraercst opurnHanbHBIA METO]] BEIYMCICHHS alPOKCUMAIIMN MMITYJIBCHBIX XapaKTEPHCTHK
JUCKETHBIX cUCcTeM. Pa3paGoTaHHBIH METOA MO3BOJISIET ONPENEINTh M TOYHO HaWTH 000OIIeHHBIe cuMBONIBI Beitna. Bo BpemeHHOIt
00JIaCTH Ha YUCIEHHOM HpPHMEpE HUTIOCTPUPYETCS CYLIECTBYIOIIME M BHOBb Ipe/UIaracMble METOJbI BBIYHCICHHUS CHMBOJIOB Beiina.
W 2, 6ubn. 21 (Ha aHIIIHICKOM sI3BIKE; pedepaThl Ha aHTIIMHCKOM, PYCCKOM M JINTOBCKOM $3.).

P. Orlowski. Apytikris Veilo simboliy skai¢iavimas naudojant atsaky trupmeninius impulsy indeksus // Elektronika ir
elektrotechnika. — Kaunas: Technologija, 2010. — Nr. 8(104). — P. 9-12.

Tiesiniy stacionariy sistemy analizei pla¢iai naudojami apibendrinti Veilo simboliai. Siai analizei panaudojama tik pusé¢ gautos
informacijos. Be to, jos negalima taikyti skaitmeniniams parametrams nustatyti. Sitilomas originalus analizés budas, kai naudojami
trupmeniniai impulsy indeksai. Siam skai¢iavimui sukurtas algoritmas, {vertinantis skaitmeniniy sistemu impulsines charakteristikas.
Pateiktas senu ir siilomu btdu apskaiciuoty Veilo simboliy palyginimas. Il. 2, bibl. 21 (angly kalba; santraukos angly, rusy ir lietuviy
k.).
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