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1Abstract—In this paper the Modified Fractal Signature
(MFS) method is applied to real Synthetic Aperture Radar
(SAR) images provided to our research group by SET 163
Working Group on SAR radar techniques. This method uses
the ‘blanket’ technique to provide useful information for SAR
image classification. It is based on the calculation of the volume
of a ‘blanket’, corresponding to the image to be classified, and
then on the calculation of the corresponding Fractal Area curve
and Fractal Dimension curve of the image. The main idea
concerning this proposed technique is the fact that different
terrain types encountered in SAR images yield different values
of Fractal Area curves and Fractal Dimension curves, upon
which classification of different types of terrain is possible. As a
result, a classification technique for five different terrain types
(urban, suburban, rural, mountain and sea) is presented in this
paper.

Index Terms—Classification of SAR images, modified
fractal signature (MFS) method, pattern recognition, synthetic
aperture radar (SAR) images.

I. INTRODUCTION

Fractals describe infinitely complex patterns that are self-
similar at different scales and are used as a mathematical
tool for different applications, such as image analysis and
classification, applied electromagnetism etc. [1]–[5]. The
self-similar structure at many different scales is a basic
characteristic of fractals. This characteristic may occur in
either a statistical or an exact sense [2]. Therefore fractals
can describe a high degree of geometrical complexity in
several groups of data as well as in images. Images, and
Synthetic Aperture Radar (SAR) images in particular, can be
considered as fractals for a certain range of magnifications.
Moreover, fractal objects have unique properties and
characteristics that can be related to their geometric structure
[1].

Hence, unlike terrain classification techniques which do
not use fractal techniques [6], [7], fractal analysis of SAR
images in particular, which correspond to different terrain
types, can provide interesting classification and
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characterization results. For example, a SAR image of an
urban area in comparison with a SAR image of a rural area,
is expected to exhibit different properties, when they are
treated as fractal objects.

In this paper the Modified Fractal Signature (MFS)
method is applied to real spaceborne SAR images, provided
to us by an International Working Group on SAR techniques
(SET 163 Working Group). The main idea concerning this
technique is the fact that different terrain types encountered
in SAR images yield different characteristic values of
‘Fractal Area’ curves Aδ and ‘Fractal Dimension’ (or ‘Fractal
Signature’) curves FD in particular, through which
classification of different types of terrain is possible [3]–[5],
[8].

II. MATHEMATICAL FORMULATION OF THE MFS METHOD

The Modified Fractal Signature (MFS) method is applied
at images and it computes the values of ‘Fractal Area’ Aδ

and ‘Fractal Dimension’ (or ‘Fractal Signature’) FD at
different scales δ of the original image (hence a ‘multi-
resolution’ approach [3]), by using an algorithm that
incorporates the so called ‘blanket’ technique [3]–[5]. The
images are initially converted to a grey-level function
g(x, y). In the ‘blanket’ approach all points of the three-
dimensional space at distance δ or less from the grey-level
function g(x, y) are considered. These points construct a
‘blanket’ of thickness 2δ covering the initial gray-level
function. The covering blanket is defined by its upper
surface uδ(x, y) and its lower surface bδ(x, y), as it is shown
in Fig. 1 [4].

Fig. 1. ‘Blanket’ of thickness 2δ defined by its upper uδ(x, y) and lower
bδ(x, y) surface.

The upper and lower surface can be computed using an
iterative algorithm (δ iterations). At first, the iteration
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number δ equals to zero (δ = 0) and the gray-level function
equals to the upper and lower surfaces, namely: uo(x, y) =
bo(x, y) = g(x, y). For iteration δ = 1, 2, … the blanket
surfaces are calculated through the following iterative
formula:
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The image pixels (m, n) with distance less than one from
pixel (x, y) are chosen in this paper as the four immediate
neighbors of pixel (x, y) [3]. Equations (1) and (2) ensure
that the new upper surface uδ is higher than uδ - 1 by at least
one. Likewise, the new lower surface bδ is lower than bδ - 1 by
at least one [3].

Subsequently, the volume of the ‘blanket’ is calculated
from uδ(x, y) and bδ(x, y) by
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Furthermore, the ‘Fractal Area’ Aδ can be calculated as
following [3]–[5]
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The ‘Fractal Dimension’ (or ‘Fractal Signature’ [3]) FD

can be calculated by the fractal area Aδ using the following
formula

2 ,DFA   (6)

where β is a constant. In other words the ‘Fractal Dimension’
FD corresponds to the rate of decreasing of the ‘Fractal
Area’ Aδ with increasing iteration δ. Subsequently, from (5)
it can be easily derived [4] that the ‘Fractal Dimension’ FD

can be obtained as a slope of the function Aδ in log-log scale,
according to the formula
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where in this paper we selected for convenience δ1 = 1 and
δ2 = 2,3,4… [3]–[5].

It appears that the value of ‘Fractal Dimension’ (or
‘Fractal Signature’) FD contains more information about the
fractal properties of each terrain type than the value of
‘Fractal Area’ Aδ [3] regarding the classification of different
types of terrain in SAR images, and this is exactly the
quantity which is used for image classification purposes [3]–
[5].

III. NUMERICAL RESULTS – TRAINING DATA

In this paper, the Modified Fractal Signature (MFS)
method is applied for different types of terrain which are
encountered in real field SAR images provided to us by an
International Working Group on SAR techniques, named
‘SET 163 Working Group’.

Fig. 2. SAR image of the city of New York, USA.

Fig. 3. SAR image of the city of Washington D.C., USA.

Fig. 4. SAR image of the city of Las Vegas, USA.

Fig. 5. SAR image from a region at the state of Colorado, USA.
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In Fig. 2–Fig. 5 the SAR images used in the fractal
analysis described above are shown. The images are real
radar images (spaceborne SAR) related to 4 different
geographic regions in the United States of America (USA),
namely in the city of New York, the city of Washington
D.C., the city of Las Vegas and the state of Colorado.

From the SAR images mentioned above, and in order that
our proposed terrain classifier is constructed, 20 sub-images
of the same size were extracted. These 20 sub-images were
organized in 5 groups, each one of them corresponding to
the 5 different terrain types selected for this terrain classifier,
namely for the following terrain types : urban site, suburban
site, rural site, mountain site and sea site (i.e. 5 different
types of terrain site). In other words, 4 sub-images per
terrain type were selected from the above mentioned SAR
images, and the average of them was used for the
construction of our classifier. All 20 sub-images mentioned
above actually represent the so – called ‘training data’ of our
proposed classifier.

The ‘Fractal Area’ curves Aδ for all 20 sub-images of
terrain mentioned above were calculated, and the average
‘Fractal Area’ curve for each type of terrain (out of 5) was
calculated. After that, the corresponding ‘multiresolution’
curves for these 5 types of terrain are shown in Fig. 6, in log
– log scale (all the logarithms mentioned in this paper have
as base the number two). Subsequently, through the use of
(6), the corresponding ‘Fractal Dimension’ (or ‘Fractal
Signature’ [3]) FD curves were calculated, as shown in
Fig. 7.

Fig. 6. ‘Fractal Area’ Aδ versus iteration δ for each type of terrain (training
data) in a log-log scale. Each curve is the average of four curves.

Fig. 7. ‘Fractal Dimension’ FD versus iteration δ for each type of terrain
(training data) obtained from ‘Fractal Area’ values, Fig. 6, by using (5).

The curves in Fig. 7 show a clearly different pattern (with
respect to ‘Fractal Dimension’ values and form of the
corresponding curve) for each of the 5 selected terrain types.
As it will be explained in Section IV below, this will provide
to us the basis for the construction of our terrain classifier,
based on the ‘distance’ between ‘Fractal Dimension’ curves,
in (7), below.

Moreover, the mean values and the standard deviation
values for the gray-scale functions corresponding to the 20
sub- images mentioned above are calculated. More precisely,
the mean value and standard deviation value for each one of
these 20 sub-images was calculated, and subsequently the
average value of mean and standard deviation values were
calculated for each terrain type (out of the 5 terrain types
mentioned above). These values are presented in Table I.

TABLE I. MEAN AND STANDARD DEVIATION VALUES.

Training data Values
Mean Standard deviation

Urban 89.50 7.98
Sub-urban 73.43 4.31

Rural 44.55 3.50
Mountain 60.51 15.82

Sea 14.20 1.37

These differences in the mean and standard deviation
values between the 5 terrain types are reflected in a more
detailed way in the ‘Fractal Area’ Aδ curves and ‘Fractal
Dimension’ FD ‘multi-resolution’ curves presented in Fig. 6
and Fig. 7. As a result, the fractal analysis presented above
can be used for the classification and the discrimination of
different terrain types encountered in SAR images, as each it
will be explained in Section IV below.

IV. CLASSIFICATION RESULTS

For the classification purposes, 5 sub-images (of the same
size with the ‘training data’ discussed in previous Section)
were obtained from the same SAR images presented in
Fig. 2–Fig. 5, and these 5 sub-images represent here our
‘testing data’. Each ‘testing sub-image’ corresponds to a
particular terrain type, out of the five (5) discussed in the
previous Section, namely: urban, suburban, rural, mountain
and sea sites.

The ‘testing data’ sub-images were compared to the
‘training data’ sub-images based on their ‘distance D’ in the
corresponding ‘Fractal Dimension’ curves FD. Namely, for
two sub-images i and j with ‘Fractal Dimension’ curves
FDi(δ) and FDj(δ) respectively, the ‘distance D’ between
them was computed using the following formula [3]
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where δ represents the number of iteration.
Then, from Table II we conclude that the same terrain

types between ‘training’ and ‘test’ data exhibit the smallest
‘distance D’ in ‘Fractal Dimension’ curves FD, thus
providing correct classification results in the classification
experiment performed here. In other words, minimum value
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of ‘distance D’ were found on the diagonal of the
‘classification matrix’ (‘confusion matrix’) of Table II, thus
providing correct classification results for the case examined
here.

TABLE II. CLASSIFICATION MATRIX.
Training

data
Test data

Urban Sub-urban Rural Mountain Sea
Urban 0.0164 0.0666 0.4318 0.7412 2.5293
Sub-
urban 0.1122 0.0149 0.4681 0.8797 2.6879

Rural 0.6305 0.5277 0.0157 0.0297 0.8359
Mountain 1.0736 0.9252 0.1304 0.0076 0.4991

Sea 2.0747 2.0585 0.7091 0.3443 0.0016

V. CONCLUSIONS

In this paper a novel approach for the classification of
different terrain types which appear in SAR radar images of
the terrain is described. This classification scheme is based
on the calculation of ‘Fractal Dimension’ ‘multi-resolution’
curves FD for corresponding sub-images, and comparison of
‘training’ and ‘testing’ data (curves mentioned above)
through calculation of the corresponding ‘distance D’
between them. Correct classification results were obtained
for the classification experiment performed in this paper,
based on real-life spaceborne SAR images.

As a future research in this area, more terrain data based
on SAR images could be obtained for both ‘training’ and
‘test’ datasets, in order to build a more robust and more
reliable terrain type classifier. Furthermore, more types of
terrain structure could be introduced (than the 5 types used
in this paper), thus introducing a more sophisticated terrain
classifier by using SAR data. Finally, other more advanced
fractal methods than the ‘MFS blanket’ method presented in
this paper, such as the ‘Regny spectrum’ method could be
used for the purpose of terrain classification using SAR
images.
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