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1Abstract—This article describes the effect of the weather on
radio wave propagation in a mobile telecommunication
network. The research is focused on urban and countryside
environments where a correlation between the received signal
power level and weather conditions is found using the Random
Forest algorithm as a signal level approximator. The results
achieved in this paper clearly indicate that it is possible to
predict the behaviour of the received power level in
relationship to atmospheric phenomena.

Index Terms–GSM, radioclimathology, prediction, adaptive
network-based fuzzy inference system, random forest.

I. INTRODUCTION

The Global System for Mobile Communication (GSM)
network is part of the outer environment that people use
every day via mobile phones, when browsing the internet or
receiving data from distant devices such as flood control
sensors. The network uses the air as a transfer medium. To
be able to describe the reliability of a GSM service, one
needs to distinguish which weather attributes affect the
propagation of a GSM signal most. Then it is possible to
predict significant changes in the propagation of the signal
such as the Receive Level on the side of a mobile phone. On
the GSM side of our system, the power level of the received
signal in idle mode has been detected. The crucial part of
our work is to detect dependencies between the received
level and meteorological conditions.

Mobile network providers need to plan and optimize their
networks to find a compromise between the radio coverage
in different types of environment, the quality of services and
the costs associated with construction and operation of the
network. Received level deterioration in the ultrahigh
frequency (UHF) band affects multipath propagation,
reflection and path loss. In digital radio communications,
these deteriorations cause errors and affect the quality of
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communication. Moreover, the magnitude of these
degradations varies with time. Therefore, it could be
significantly interesting and scientifically useful to predict
path loss and use the output of the prediction as the input for
coverage planning, mobile radio network optimization and
radio link adaptation [1].

Cell sizes depend on many factors, such as terrain profile,
type of environment (urban, suburban and countryside) and
transmission parameters (such as transmitted power) of the
base stations. One of the factors which also affect the cell
size (the radio coverage) is weather conditions such as rain
[2], [3] or sand and dust storms [4]. Measurements taken
during the rainy season led to the modification of the
Okumura Hata wave propagation model [5]. The effect of
wet ground on radio propagation has been studied in [6].
The factors affecting path loss due to rain and snow have
been implemented into the propagation model [7]. Some
practical improvements in the existing models for
macrocells, microcells and signal prediction in the indoor
environment, as well as some new models, have been
studied in [8]. The behaviour of electromagnetic waves
propagating through densely arboreous environments [9]
and through sparsely arboreous areas has been studied in
[10]. The effect of the environment and altitude on the UHF
band has been studied in [11]. In [12] a radio link was
augmented by a radio channel state prediction method. In
[13] we presented a K–means method that was used to
decide which parameter related to weather affects the
propagation of radio waves in a mobile telecommunication
network.

This research is focused on proposing a way to
approximate the signal strength based on its analysis with
regards to possible effects by atmospheric phenomena such
as humidity and temperature. The secondary contribution
would be to create such an approximation for urban and
countryside environments, including possible comparison.

II. DATA ACQUISITION

The data which are analysed consist of two subsets. The
first subset is related to the identifiers associated with GSM
technology while the second subset is related to the
identifiers associated with weather. The data related to GSM
are parameter values that are transferred between the mobile
station (MS) and the mobile network through a signalling
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channel. A set of these parameters is called a Measurement
Report (MR). An MR includes, among others, parameters
such as “Receive Level, Absolute Radio Frequency Channel
Number” (ARFCN) and “Base Station Identity Code”
(BSIC) [14]. The parameters are acquired by a GSM modem
and stored on a computer at periodic intervals. An
application that synchronously stores the current values of
GSM parameters and current values related to weather has
been developed. The data related to weather were acquired
by two professional meteorological stations located in both
urban (Poruba district of the city of Ostrava) and
countryside (the village of Bukovec) environments located
in The Czech Republic. Given the slightly different
conditions of the stations in each location, the parameters
measured vary slightly. Parameters common for both
locations are “date, time, temperature, humidity, dew point,
wind direction, wind speed, wind chill, barometric pressure,
heat index” and “precipitation per hour”. Parameters
specific for the Poruba station are “THW index, falling” and
the time of “sunrise” and “sunset” while the sole Bukovec-
specific parameter is the “pressure development” over 24
hours. The “THW index” uses humidity, temperature and
wind to calculate a seeming temperature that incorporates
the cooling effects of the wind into our perception of
temperature. “Falling” represents the trend of barometric
pressure.

III. PREDICTION MODEL

In order to approximate the power level of the BTS, a
prediction model needs to be constructed. In this paper, the
Random Forest algorithm that groups Classification and
Regression Trees (CARTs) into a majority voting classifier
was used.

A. Classification and Regression Tree
Originally proposed by Breiman in [15], CART is a tree

structure capable of solving both classification and
regression problems. Basically, a CART is a binary tree that
uses a set of yes/no questions to construct its nodes by
splitting an observation into two parts that are as
homogenous as possible and then repeating the process for
each resulting part until complete decomposition of the
observation is achieved. The classification and regression
modes of the CART use different algorithms that govern the
splitting.

Common for both nodes is the use of an impurity function
to evaluate the homogeneity of the split [16]. Given that the
impurity of a parent node is always constant when
computing its child nodes, the impurity of the child nodes is
computed as a change in impurity of the computed node,
Δi(t). Let tp be a node that is the parent to its left node tl and
right node tr and Pl and Pr be the probabilities of the
respective nodes. The change in impurity can then be
computed as

       .p l l r ri t i t P i t P i t    (1)

Annotating an observation variable and the best
splitting value of the variable , where = 1,… , and

is the number of variables, CART can be observed as
solving the following maximization problem in each of its
nodes

     arg max     .R
j j

p l l r rx x
i t P i t P i t


    (2)

The difference between the classification and regression
mode of the CART is in the way the impurity function is
calculated. In the classification mode, the most commonly
used impurity function follows this formula, known as the
Gini splitting rule or Gini index
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i t p k t p l t


  (3)

where , = 1, … , is the number of classes and ( | )
is the conditional probability of class given that the
current node is node . Incorporating the Gini rule, CART
solves the following maximization problem
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As regression trees have no classes, their output is a
response vector containing response values for each
observation. The Gini rule cannot be applied due to the
absence of classes; instead a squared minimization residual
problem is solved. Defined as

   arg min   ,R
j j

l l r rx x
PVar Y P Var Y


   (5)

where ( ) is the response vector of the corresponding
child node, the problem attempts to minimize the expected
sum variance for the two resulting nodes. Here, ≤, = 1,… , is the optimal splitting question capable of
satisfying the above formula.

While the Gini rule cannot be applied directly, it can quite
easily be adapted for the regression mode. Let objects of
class be assigned the value of 1 and objects of other
classes the value of 0. The variance of these values would
be

   | 1 | .p k t p k t   (6)

Summation over the number of classes then yields the
impurity function commonly used in regression trees

   2

1
1   | .

K

k
i t p k t


   (7)

Once a tree is constructed using these rules appropriately,
it can be very large, especially in regression mode.
Therefore, pruning is employed to reduce the tree size to the
desired value. Once pruning is complete, the tree is
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ready for use in classification and regression problems.

B. Random Forest
Random Forest (RF) could be considered a majority

voting classification and regression method as it combines a
number of CARTs into a larger structure. For each tree in
the forest, a random combination of a predefined number of
input parameters is chosen and used to construct it. Testing
samples are then evaluated against conditions in each node
and propagated throughout the tree. When the sample
reaches a leaf node, it is then assigned the class or value to
which the samples in that node belong. In the forest, this is
performed by all trees, providing a response from each of
them. The testing sample is then assigned the class that was
suggested by the majority of trees. Commonly, a binary tree
with logical conditions is used, as was the case in this paper.
Given that an RF consists of CARTs, it is capable of
working in two modes, classification and regression,
depending on the task it is expected to solve.

IV. EXPERIMENTS

The following section provides a description of the data
used to train and evaluate the approximator, of the
approximator itself as well as the experiments performed
and results measured.

A. Data Preparation
Before the data could be used as an approximator’s input,

optimization procedures had to be performed. The parameter
set contains the Receive Level values from one service
station and up to 6 neighbouring Base Transceiver Stations
(BTS). These values are continually sorted from the
maximum to minimum value. Unfortunately, since the value
of the Receive Level is affected by fast Rayleigh's fading,
the position of the cell related to the first one or one of the
neighbours varied. Therefore, it was necessary to select the
cell which is identified by ARFCN.

Once selected, a data matrix was assembled from the
collected data for each of the selected BTSs in the common
row-sample, column-value format. To construct the matrix,
dates and times were parsed into 3 numeric values each, and
text parameters (like wind direction) were converted into
integer numbers. Overall, the Poruba meteorological station
provided 21 separate parameters against 16 input values per
sample from Bukovec. For each BTS, a different number of
samples were measured, however, every BTS had an
abundance of data to perform the experiments (millions of
samples).

As mention in the previous subsection, the RF algorithm
requires training and therefore a training set. For this
purpose, a small portion of data, 60000 samples, was
separated. This was the lowest number of training samples
that provided the maximum accuracy. Increasing the number
of training samples had no effect on the accuracy while after
decreasing it the effect was detrimental. The training
samples were chosen randomly with normal distribution.
The rest were then used to evaluate the Random Forest
method.

B. Experimental Settings
Overall, 6 different cells were used for the evaluation, two

for the Poruba location with CellID 75F4 and 76B3 and four

for Bukovec with CellID A863, A864, A865 and AEDD. To
measure the RF performance, the Root Mean Squared Error
(RMSE) between the expected and resulting output was
used. The approximation accuracy was measured for two
different approximation scenarios. The first scenario,
scenario1, allows RF trees to choose from all possible input
parameters. The second scenario, scenario2, limits the
number of parameters to a mere three, each representing a
water-related weather attribute – temperature, humidity and
dew point. This scenario is a natural reaction to the
empirical observation suggesting the parameters that most
closely correlated to the BTS power levels are related to
water.

The settings used for the experiments were as follows: 6
randomly selected parameters per tree and 1000 trees in the
forest for scenario1, 2 parameters and 3 trees for scenario2,
regression mode. While the number of trees for scenario2
seems low, 2 parameters out of 3 can only be combined 3
different ways. Thus, more trees would result in redundant
identical trees in the forest which could, according to the
majority voting principle of the algorithm, influence the
performance in favour of one of the combinations. In
scenario1, the parameters can be combined in thousands of
different ways.

C. Results
Given the random nature of choosing parameters during

RF tree constructions, the experiments for each BTS were
performed in 10 trials and the results were averaged. Each
trial was made with a different, randomly chosen training
set. Table I shows the resulting RMSEs for scenario1. It can
be seen that while RF is a random algorithm that, given the
number of possible input parameters in scenario1, cannot
cover all possible combinations, it is quite robust in its
performance. The particular results in individual trials vary
only insignificantly.

TABLE I. RESULTING RMSES FOR THE FIRST SCENARIO.
Cells for Bukovec Cells for Poruba

Trial A863 A864 A865 AEDD 75F4 76B3
1 1.2415 1.2485 0.8525 1.3392 1.8638 1.9980
2 1.2415 1.2485 0.8559 1.3453 1.8668 1.9985
3 1.2431 1.2512 0.8536 1.3402 1.8576 1.9965
4 1.2426 1.2489 0.8545 1.3443 1.8639 1.9947
5 1.2429 1.2485 0.8541 1.3457 1.8601 1.9978
6 1.2432 1.2487 0.8540 1.3441 1.8555 1.9970
7 1.2413 1.2479 0.8535 1.3411 1.8647 1.9983
8 1.2422 1.2489 0.8535 1.3436 1.8613 1.9983
9 1.2415 1.2485 0.8533 1.3376 1.8639 2.0010
10 1.2426 1.2487 0.8534 1.3439 1.8625 1.9961

Average 1.2423 1.2488 0.8538 1.3425 1.8620 1.9976
Deviation 7.21e-4 8.94e-4 9.18e-4 2.77e-3 3.45e-3 1.69e-3

Table II presents the results for scenario2, where the
average approximation RMSE was, as expected given the
much lower number of input parameters, higher.

Aside from the absolute and average RMSE of each BTS,
both tables also show the standard deviation of the results.
The deviation across trials is miniscule and therefore
insignificant, showing the robustness of Random Forest
when trained using different samples.

Figure 1 illustrates Random Forest’s capability of fitting
its output to the expected values. The horizontal axis is not
important as it only shows the index of a sample; the vertical
axis, however, expresses the output parameter, the received
power level. The light-coloured polyline illustrates the
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expected value while the darker polyline is the
approximation of 200 randomly chosen test samples.

TABLE II. RESULTING RMSES FOR THE SECOND SCENARIO.
Cells for Bukovec Cells for Poruba

Trial A863 A864 A865 AEDD 75F4 76B3
1 2.7929 2.7522 2.1431 2.6781 3.5231 3.6464
2 2.7943 2.7527 2.1432 2.6867 3.5393 3.6368
3 2.7878 2.7541 2.1455 2.6825 3.5262 3.6340
4 2.7919 2.7543 2.1357 2.6817 3.5218 3.6293
5 2.7984 2.7568 2.1428 2.6842 3.5207 3.6359
6 2.7889 2.7496 2.1445 2.6869 3.5097 3.6356
7 2.7935 2.7551 2.1399 2.6846 3.5204 3.6399
8 2.8020 2.7461 2.1401 2.6834 3.5210 3.6473
9 2.7930 2.7568 2.1344 2.6816 3.5206 3.6436
10 2.7898 2.7609 2.1397 2.6834 3.5250 3.6380

Average 2.7932 2.7539 2.1409 2.6833 3.5228 3.6387
Deviation 4.31e-3 4.11e-3 3.66e-3 2.59e-3 7.31e-3 5.69e-3

Fig. 1. An illustration of the Random Forest results fitting the expected
values.

The results proved that it was more difficult to
approximate the power level in the urban rather than in the
countryside environment. A sparsely populated countryside
environment indicates different propagation characteristics
than a densely populated urban environment. Countryside
path loss values are lower than urban path loss values
because the countryside areas are composed of open land
with small buildings and plain areas. Moreover, in
countryside and open areas, the range of slow fading is
lower than that in suburban and urban areas. These facts
contribute to a more complicated and difficult
approximation, as shown above.

V. CONCLUSIONS

Based on the results in this paper, we are able to predict
the behaviour of the received power level affected by
atmospheric phenomena. The average RMSE proved that
the proposed model can be applicable in a method for
increasing the efficiency of power consumption for a base
station. It is well known that the main source of energy
consumption in cellular mobile networks is the base station.
Therefore, reducing the energy consumption of BTSs as the
main energy consumers is extremely important. The
research in this paper suggests that the radiated power level
of BTS can be adjusted while considering the atmospheric
conditions, which leads to an improvement in the energy
efficiency of the mobile radio network.

In their further work, the research team are to focus on the
same issues in different frequency bands related, for
example, to Digital Audio/Video Broadcasting technology
or the new generation of mobile network such as Long Term

Evolution (LTE). Formalizing and mathematically
describing the relationship between the received power level
and mentioned weather parameters, implementing the
researched technique into a hardware solution, combining
different kinds of input data or developing whole new
approaches to solve the problem, possibly based on hybrid
paradigms, are other topics of both future and currently
ongoing research.
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