
ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 19, NO. 10, 2013

1Abstract—The classical structure of linear interpolation-
based phase-to-sine mapper (PSM) consists of at least two
ROMs for polynomial coefficient storage. Other architectures
may include extra ROM for storing residual errors. However,
ROMs dissipate high power and occupy a significant amount of
the die area. This study presents a new technique that
eliminates the ROM by including the computation of segment
initial coefficients in the hardware. Therefore, it becomes
possible to trim down noticeable hardware resources. The
proposed direct digital frequency synthesizer (DDFS)
architecture has been encoded in VHDL and synthesized with
Quartus II software. Post simulation results show that the
proposed design is capable of achieving the theoretical
spurious-free dynamic range (SFDR) upper bound when
optimal polynomial coefficients are considered. For 32
piecewise linear segments, the SFDR of the synthesized sinusoid
is 84.15 dBc. A ROM compression ratio of 597.3:1 was also
achieved. The performance of the DDFS is compared with
previously presented DDFS techniques and the results show
that the proposed design has advantages of high ROM
compression ratio and low hardware complexity.

Index Terms—Direct digital frequency synthesizer, DDS,
phase to sine amplitude conversion, piecewise linear
approximation.

I. INTRODUCTION

Direct digital frequency synthesizers (DDFSs) are capable
of producing sine output waveforms with ultra-thin
frequency increments, fast frequency switching, and high
spectral purities. The synthesized signal is primarily digital
in the DDFS; thus, the DDFS can be incorporated with
different digital modulations because of the ease in handling
the frequency, phase, and amplitude in the digital domain.
Moreover for a number of applications it is required to
switch the DDFS output frequency in some predefined
pattern. The most obvious application would be a DDFS-
based chirp signals used in radar system, spread spectrum
communications, and as the stimulus in bio-impedance
measurement. Among other frequency synthesis types,
DDFS appears the most suitable technique for such
applications. DDFS exhibits flexible tune capability over a
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wide frequency range with very short time. The more
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Fig. 1. ROM-based DDFS basic architecture.

important feature is that the duration of chirp signal and its
frequency range can be adjusted independently [1].

The ROM-based DDFS architecture was first introduced
by Tierney et al. [2]. As displayed in Fig. 1, the basic
structure of the ROM-based DDFS consists of three major
blocks; phase accumulator, phase to sine amplitude
converter (PSAC), and digital-to-analog converter (DAC).
fclk represents the reference clock used by the DDFS and
FIW is the frequency instruction word. At each leading edge
of the fclk, the phase accumulator adds an M-bit FIW. The
accumulated phase value addresses the sine lookup table
(LUT) to produce sine waveforms. One period of a
synthesized waveform is exactly the overflow of an M-bit
phase accumulator. The synthesized frequency output can be
expressed as the following

,
2

clk
out M

f
F FIW (1)

where 10 2 .MFIW  
For a precise approximation, the ROM-based sine LUT

has to be packed with sine amplitude values that correspond
to each possible phase value. The phase and amplitude
quantization errors are inversely proportional to the depth
and width of the ROM, respectively; thus, stretching the
ROM for a high spectral purity sinusoidal output is
preferable. A large ROM has high power consumption and
occupies a large area. These factors negatively influence the
performance of the DDFS. Therefore, compressing the size
of the ROM without sacrificing spectral purity is essential.
Most DDFSs are developed from the architecture shown in
Fig. 1. However, during the last four decades, considerable
modifications have been introduced and numerous
alternative architectures have been proposed to reduce the
computational complexity of the PSAC. In general, these
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methods can be categorized under three major groups; ROM
compression [3]–[5], angle rotation [6]–[8], and piece-wise
polynomial interpolation methods [9]–[11].

As stated in [9], [10] the piecewise linear interpolation
method is regarded as an efficient technique comparable
with other approximation techniques in terms of
performances and hardware complexity. A generic PSAC
structure based on the linear interpolation technique
comprises two ROMs for storing segment initial amplitudes
and segment slope coefficients. In this study, we propose a
developed version of the standard linear-interpolated PSAC
architecture. Our goal is to eliminate the ROM, which stores
segment initial coefficients, to minimize system complexity.
Once the ROM is eliminated, we expect the target system to
exhibit excellent spectral purity and low power consumption
with reasonable hardware overhead.

II. PIECEWISE LINEAR INTERPOLATION BASIC
BACKGROUND

In uniform piecewise linear approximation, the first
quadrant of the sine function is divided into s segments of
equal length. Each segment is approximated with a first-
order polynomial. Thus, p(x) can be expressed as the
following:

0 0 0 0 1
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(2)

where mi and ci are the polynomial coefficients of the ith
segment, x the input phase scaled to a binary fraction in the
interval [0, 1], s is the number of segments that is chosen to
be a power of two for further simplification. Fig. 2 depicts
the basic structure of the uniform piecewise linear-
interpolated PSAC, where two ROMs, one multiplier, and
one adder are common blocks. We aim to evaluate the initial
coefficients to bypass one of the coefficients ROMs. In the
following section, we show that a simple recursive
substitution in each polynomial segment enables the segment
initial amplitude coefficients to be derived from the slope
coefficients; accordingly, ROM elimination becomes doable.

III. THE PROPOSED MODIFICATION

As mentioned before the segment initial amplitude
coefficients ci can be obtained by recursive substitution in
each segment polynomial. In each subinterval of (2), the sine
function is approximated by a first-order polynomial with
the following form

( ) .( ) ,i i ip x c m x x   (3)

where 1,i ix x x   0..i s .
For a uniform piecewise linear approximation, the

segments are equal in length and the segment bounds xi are
equal to (i/s). Starting from the first interval, the segment
initial coefficient c0 and segment lower bound x0 are equal to

zero. Thus, the first segment polynomial is expressed as the
following
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Fig. 2. The linear interpolated DDFS basic structure.

0 0( ) . ,p x m x (4)

where 10 sx  .

By substituting the segment bound 1/(s) into (4) we can
find the second segment initial coefficient c1 as follows

1 1
1 0 0( ) . .s sc p x m   (5)

Thus, p1(x), the second segment polynomial

1 1 1 1.( ) ,p c m x x   (6)

where 1 2
s sx  , can be expressed in terms of slope

coefficients by substituting (5) into (6) as follows

1 1
1 0 1( ) .( ) .( ) ,s sp x m m x   (7)

where 1 2
s sx  .We apply the same procedure for segment

number two by substituting the segment boundary (2/s) into
(7). Therefore, the third segment initial coefficient c2 is
expressed as the following

2 1 2 1 1
2 1 0 1 0 1( ) .( ) .( ) ( ).( ).s s s s sc p x m m m m       (8)

And p2(x) can readily be expressed as follows

1 2
2 0 1 2( ) ( ) .( ),s sp x m m m x    (9)

where 32
s sx  .

Following the same procedure for the ith segment
polynomial

( ) .( ) ,i i i ip x c m x x   (10)

where 11 i
s sx   . We can, in general, deduce the segment

initial coefficient ci as the following

1
0 1 1( ).i isc m m m     (11)

By substituting (11) into (10), pi(x) becomes the following
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where 1i i
s sx   . We can then rewrite (2) as follows
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Fig. 3. The proposed DDFS architecture.
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At this point, the initial coefficients are successfully
replaced by accumulated pervious slope coefficients, thus
allowing the ROM to be replaced with a simple accumulator.
We show in subsequent sections of the paper that the
hardware resources of the counterpart accumulator are
significantly less than the replaced ROM hardware
resources.

IV. THE PROPOSED DDFS ARCHITECTURE

Based on the theoretical approach presented in the
previous section, we introduce a single coefficient ROM
architecture displayed in Fig. 3.

The initial coefficients ROM is replaced by a simple
digital accumulator, which is depicted in the dashed-line
rounded rectangle. The accumulator is simply a digital
Integrator in which its output is an integral of the slope
coefficient equivalent to the initial coefficient. Furthermore,
memory requirements are reduced by a factor of four by
exploiting the quadrant symmetry of the sine function.
Accordingly the architecture has to perform both positive
and negative accumulation. For this purpose the 1’s
complement block is needed. The accumulator word length
is given by

 1
2 0log ( ) .s

qiiD dec m


     (14)

Or simply equal to (N+log2s) bits long, where ⌈.⌉ denotes
the ceiling function, dec(mqi) represent the decimal value of
the ith quantized slope coefficient, and N the slope
coefficient word length.

According to (13), for a given segment i, the accumulator
has an instance value of  

1
0

i
j jm which represents the

segment initial coefficient ci. This value must be kept

unchanged during the segment interval. In doing this, the
architecture has to initiate one accumulation cycle coincident
with each segment’s transition. For this purpose, a digital
comparator is used to monitor the ROM address bus (the
segment selector) for detecting the events of segment’s
transition. Thus, the comparator output signal En is
responsible for initiating the accumulation cycle.

The phase boundary value (π/2) is quantized to L – 2-bits;
thus, the segment bound is B = L – 2 – Log2s bits. In this
case, the output of the accumulator must be shifted left by
B–bits before adding the resulting coefficients to the
multiplier output , as a result the adder has a word length of
(D+B) bits. Hardwired shifting does not involve any digital
gate. Finally, the output of the adder has to be truncated to
P = L – 1 word length to accommodate the required DAC
resolution. The ROM size required for this architecture is
2A × N bits. Compared with the conventional counterpart
architecture, which has an additional initial coefficient ROM
of 2A × (L – 1) bits, the proposed algorithm can save 2A × (L
– 1) memory entries with the penalty of the D-bit additional
accumulator.

V. SAMPLE DESIGNS AND PERFORMANCE

Following the proposed architecture shown in Fig. 3, we
consider a design sample and show the best possible
computational cost in this section. We assume that the first
quadrant of the sine function is divided into 32 segments (s =
32). The same design procedure can be used for any
different number of segments with similar results. In [9],
[10] it is stated that with uniform piecewise linear
approximation, the maximum achievable SFDR for a certain
number of segments is given by

220log(1 16 ) 24.08 40log( ).dBcSFDR s s    (15)

Thus, the targeted SFDR of 84.286 dBc has to be
achieved. As a rule of thumb, with L-bits phase resolution,
spurs introduced by phase truncation is given by -6.02L dB,
thus, the system parameters of this design can be obtained as
follows : L = 15 bits, P = L – 1 = 14 bits, A = log2 (s) = 5,
and B = L – 2 – A = 8. The width of the ROM, added
accumulator size, multiplier, and adder feed inputs all
depend on N, which is the slope coefficient word length.

Hence, to complete the design with minimum hardware
overhead, we have to minimize the polynomial coefficient
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word length N which is the key parameter that determines
the performance of the PSM.

By knowing the N, we can easily obtain the accumulator
word length D by using (14), the size of the multiplier, and
the adder feed inputs. In doing so, the optimal polynomial
coefficients have to be obtained first and then quantized on a
given number of bits to achieve the targeted SFDR level.

VI. OPTIMAL POLYNOMIAL COEFFICIENTS

To minimize the approximation error, the minimum-
mean-square-error (MMSE) criterion is employed:

2 2
0[ 0.. 1]

min [ ( )] ,
i

r
m s

MMSE x dx 
 

  (16)

where 20),()sin(   xxpxr .
With aid of a powerful Maple optimization package, the

optimal set of slope coefficients, mi (i = 0.. s-1) is obtained
and presented in Table I.

TABLE I. OPTIMAL SLOPE COEFFICIENTS.
i mi i mi i mi

0 0.99977007 11 0.84493828 22 0.44965506
1 0.99751977 12 0.81766366 23 0.40528070
2 0.99244191 13 0.78842327 24 0.35993011
3 0.98540874 14 0.75728244 25 0.31371196
4 0.97578671 15 0.72431753 26 0.26673977
5 0.96387676 16 0.68960760 27 0.21911842
6 0.94960230 17 0.65323637 28 0.17099434
7 0.93321163 18 0.61529142 29 0.12236189
8 0.91415493 19 0.57586419 30 0.07380440
9 0.89334866 20 0.53504965 31 0.02365137

10 0.87016184 21 0.49294613

The p(x) has quadrant symmetry; thus, the spectrum of the
p(x) is inevitably free of even harmonics and can be
expressed as a Fourier sine series: as follows

1 2( ) ( ),n
nnp x b Sin x

 (17)

where 0 1, 1,3,5x n    , and the bn, the magnitude of
odd harmonics is given by

1
0 22 ( ) ( ) ,n

nb p x Sin x dx  (18)

where 1,3,5n  .
Figure 4 shows the spectrum of the p(x), where the largest

unwanted frequency component occurs at the harmonic (4s –
1) and has an amplitude of −84.15 dB with respect to the
target sinusoid. It is clear from the same figure that the
resulting non-quantized optimal coefficient mi s, can satisfy
the theoretical finding of the SFDR upper bound of (15).
Figure 5 shows the residual error of the approximated
sinusoidal wave. The greatest maximum absolute error is
equal to 1.9 × 10−4 and can be seen in the last linear segment
(i = s).

VII. QUANTIZATION OF POLYNOMIAL COEFFICIENTS

To obtain efficient hardware realization, the optimal real-
valued coefficients (detailed in Table I) have to be quantized
with sufficient finite precision. The rounded quantized

coefficient mqi can be obtained by the following

2 0.5 ,N
qi im m    (19)

where [.] denote the floor function, N is the coefficient word
length, and 0.5 ensures that the half-way values (2Nmi) are
rounded up. Reducing the coefficient word length to
minimize the LUT size and simplifying the arithmetic
circuitry is highly desirable; however, the resulting poor
accuracy due to excessive quantization may further decrease
the SFDR level. Thus, the design has to balance circuit
complexity against quantize accuracy. To achieve this
balance, the SFDR level has to be checked for each quantize
accuracy starting from the lowest accuracy.
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Fig. 4. The spectrum of the p(x).

Fig. 5. The residual error of the synthesized curve.

The quantization process is started with N = 4-bits. The
resulting spurious level is checked on whether it satisfies the
targeted SFDR level. According to Fig. 6, the SFDR with 4-
bit coefficient word length is about 73.2 dBc which is far
below the theoretical SFDR upper bound. Thus, we have to
quantize the coefficients by using a 5-bits and above. From
the graph with 6-bit quantization trial, it can meet an SFDR
of 82.8 dBc, which is just 1.2 dB below the maximum
achievable SFDR. The available results from the 7-bit and 8-
bit trials do not exhibit considerable SFDR improvement.
Each additional bit will increase the LUT by s bits and
extend the accumulator and multiplier size by 1 bit.
Consequently, a 6-bit quantization resolution has been
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Fig. 6. SFDR level for different quantization accuracy.
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considered as a compromise solution with an acceptable
spurs level of 82.8 dBc. The quantized slope coefficients are
shown in Table II.

TABLE II. QUANTIZED SLOPE COEFFICIENTS.
Slope coefficient mQi (quantized with 6 bits)

63 63 62 62 61 61 60 59 57 56 55 53
51 50 48 46 43 41 39 36 34 31 28 25
23 20 17 14 11 8 4 2 1

Once again, the spectrum of quantized pq(x) needs to be
determined to show the effect of the quantization process.
Figure 7 represents the resulting spectrum where the largest
unwanted frequency component has an amplitude of
−82.8 dBc, which occurs at the harmonic (4s + 1).
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Fig. 7. The spectrum of the quantized pq (x).

Fig. 8. The approximate error εrq(x).

Figure 8 shows the residual error of the approximated
sinusoidal wave with a 6-bit coefficient word length. Unlike
the non-quantized errors shown in Fig. 5 the quantized errors
appear randomly distributed over the segment lines because
of the nonlinear truncation and rounding processes.

VIII. STRUCTURAL DESIGN IMPROVEMENTS

The architecture displayed in Fig. 3 has to be improved to
achieve a well-organized hardware. First, for the Multiply-
Add circuitry shown in Fig. 9(a), we suggest two scenarios
shown in Fig. 9(b) and Fig. 9(c). In the first proposed
scheme, the output of the digital integrator after hardwired
shifting has to be added to the mi.x product

8[18 : 0] 2 [10 : 0] [13 : 0].i iAdd c m x  (20)

The size of the first term is 18 bits and its right hand side
contain 8 zeroes. Thus, the 8 least significant bits (LSBs) of
the mi.x product are concatenated to the resultant output. The
addition can be expressed as follows

 8[18 : 0] [7 : 0]& 2 [10 : 0] [13 : 8] .i i iAdd m x c m x  (21)

Truncation
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Fig. 9. (a) Multiply-Add data flow; (b) Without rounding; (c) With
rounding; (d) The realized circuit.

The notation is used in the VHDL hardware description
language. The adder output is D + B = 18 bits, which does
not match the 15-bit sine output resolution. Thus, the adder
output word length has to be truncated by 5 bits. The adder
after truncation is defined as follows

 3[13 : 0] [7 : 5]& 2 [10 : 0] [13 : 8] .i i iAdd m x c m x  (22)

Indeed the first 5 LSBs of the mi.x products has been
truncated (even in final stage). Thus, truncating the the mi.x
product in the early stage is preferable. In doing so the
multiplier output become 9 bits, which leads to a noticeable
logic gate saving. Following this procedure, the proposed
scheme requires a (6 × 8) bit multiplier with 9 bits of output,
6 full adders (F. A), and 5 half adders (H. A). No rounding
process has been applied. Defiantly, in the first scenario, the
truncation of the 5 LSBs of the mi.x product will introduce
an arithmetic error. For this purpose, the rounding technique
must be applied. The rounding process is usually realized by
adding a constant value equal to LSBOUT /2 = 24 and then
truncating the result.Thus, we have to add mi.x [4] to the
final result

 3

[13 : 0] [4] [7 : 5]

2 [10 : 0] [13 : 8] .
i i

i i

Add m x m x

c m x

  

  (23)

The implementation of such a scheme is displayed in
Fig. 9(c). This scheme requires 3 additional H.A payments
as a penalty for the rounding process, and the multiplier has
to be truncated with only 4 LSBs. The exact realized circuit
is shown in Fig. 9(d). The proposed architecture shown in
Fig. 3 still requires improvement. The second modification
allows the two’s complementer to be replaced at the input of
the accumulator with a simpler one’s complementer. The
MSB2 of the input phase feeds the Carry-in of the first
adder. Therefore, it becomes possible to save the +1 adder
that is essential to perform the two’s complement

107



ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 19, NO. 10, 2013

TABLE III COMPARISON WITH REPORTED WORK.
Architecture ROM Required (bits) Compression

Ratio
Significant Additional

Logic Circuits
SFDR
(dBc) Comments

[9] 2003 Langlois and
Al Khalili

Register
25× 14

256:1
(with respect to 213×14 ROM)

Three 14-bit adders, three 9-bit
32 to 1 multiplexers, one 14-

bit 32 to 1 multiplexer, and 96
inverters

84.2 Highly circuitry needed

[4] 2006 L. S.
Chimakurthy, et al. 28×12 37.3:1

( with respect to 213×14 ROM)

Twice clock frequency, 3
adders, one multiplier, one
shift register and frequency

divider

89 More circuitry needed with
very low compression ratio

[5] 2008 Lai Lin-huil Li
Xiao-jinl 328 75:1 ( with respect to 211×12

ROM)
8 adder, 6 shift register , and 4

multiplexers 63.58
Highly circuitry needed with
Poor spur level and low
compression ratio

Standard uniform Linear
Interpolation

(25× 6)
+

(25× 14)

179.2:1
( with respect to 213×14 ROM) One  adder, one  multiplier, 84.2 Low complexity with low

compression ratio

The proposed Technique 25× 6 597.3:1
( with respect to 213×14 ROM)

One  adder, one  multiplier,
11-bit accumulator, and 12

XOR gates
82.8 Low complexity with best

compression ratio

Furthermore we have to extend the output of the ROM by
(D-N) MSB bits to match the accumulator inputs; otherwise,
performing the negative accumulation is impossible.

IX. PERFORMANCE COMPARISON

To validate the proposed algorithm, we code the design
sample and traditional piecewise linear interpolation DDFS
architectures in the VHDL by using Altera Quartus II 11.0
software with the previously mentioned parameters. The
designed projects are implemented after full completion by
using Stratix III FPGA (EP3SE50F484C2 device).

An architecture having 32 piecewise linear segments
should have a worst-case spur of −84 dBc, which is achieved
as well. Figure 10 shows the output spectrum for the output
frequency of 0.124 clock frequency with FIW set to 4065.
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Fig. 10. Calculated output spectrum for Fout = 0.124 fclk.

The characteristics of the proposed work, along with the
standard uniform linear-interpolated DDFSs, are
summarized in Table III and are compared with previously
published algorithms. Please note that the compression ratio
has been calculated with respect to (2L-2 × P) ROM size,
where L is the phase resolution and P = L – 1 is a sine output
resolution. As a great advantage of this technique is that, it
can replace the ROM size of S × (L – 1) bits required by
standard architecture with (N + log2s) bit accumulator. For
example, the ROM size required by the traditional approach
for s = 64 is (64 × 15) bits, which can only be replaced by a
12-bit accumulator. The accumulator size is just 1 bit over
the architecture of s = 32 while the compression ratio now is
758:1. Compared with the algorithms in [9], [4], and [5], the
proposed algorithm exhibits the highest compression ratio
with low hardware overhead.

X. CONCLUSIONS

In this paper, we have presented a develop phase-to-

sinusoid amplitude conversion architecture based on linear
interpolation. The initial coefficient ROM has been replaced
by a simple digital Integrator. A generalized single ROM
DDFS architecture utilizing this approach was presented,
and a particular design with optimal polynomial coefficients
of 32 linear segments is discussed. The Multiply-Add
circuitry has been minimized, resulting in lower hardware
implementation cost. The conventional and develop version
designs have been implemented on Altera’s Stratix III FPGA
(EP3SE50F484C2). It is shown that the proposed approach
exhibits an excellent ROM compression ratio with
reasonable hardware resources in comparison with
previously presented DDFS designs.
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