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1Abstract—A new fault simulation procedure is suggested.
The procedure provides fault detection of individual test
patterns at the beginning. In this way, most faults are detected
quickly. The remaining faults are analysed by conventional
means with a sequence of test patterns. Creation of individual
fault lists of test patterns allows speeding up the fault
simulation. The fault simulation acceleration increases with
circuit size and test coverage.

Index Terms—Integrated circuit testing, failure analysis,
fault simulation, model checking.

I. INTRODUCTION

Functional test generation requires an assessment of test
quality. For this purpose, fault simulation is used which
takes a lot of time. Therefore, accelerating fault simulation is
particularly relevant. The fault simulation acceleration
problem has long been considered. The fault simulation task
is very suitable for parallelization of computations.
Improvement of fault simulation methods had a significant
impact as well. This article proposes to make a fault list for
each pattern of sequential circuits. A pattern consists of a
sequence of input stimuli.

In general, the first stimulus of the test pattern uses the
indefinite circuit state. The fault simulation object is a series
of test patterns. The initial circuit state may establish a test
pattern, which has been lodged before. In this case the test
pattern can detect a fault which does not occur when the
initial state is uncertain. Detection of these faults depends on
the order of test patterns. We will call such faults as detected
on the sequence of pattern. Detected faults on patterns are
independent of the order of test patterns and are found in all
of the initial circuit states. Functional test generation,
minimization of test pattern sequence should be based only
on faults detected on patterns. Evaluation of the final test
could rely on the detection of faults on the sequence of
patterns. Most of the tools of fault simulation determine
faults detected on the sequence of patterns. Typically, test
patterns are generated so that they detect faults in the circuit
regardless of the initial state. Combining test patterns in a
sequence, if successful, allows detecting additional faults
that cannot be detected by an individual test pattern. It is
difficult to tell how many faults can be detected in such a
case in advance. It depends on the degree of fault coverage

Manuscript received November 23, 2013; accepted October 14, 2014.

62

and luck. Therefore, it is not a reliable way to increase fault
coverage.

Usually fault simulation inspects whether all undetected
faults are detected by a test pattern. The list of the inspected
faults is very large for complex circuits. Only a small
percentage of inspected faults is confirmed as detected.
Clearly unlikely faults can be rejected in advance. Pattern
simulation results can be used to reject unlikely faults. The
use of these ideas is described in the article.

Il. RELATED WORK

The main fault simulation studies were carried out mainly
two decades ago and are widely described in many books
and articles, but we will refer to only one of them [1]. The
existing techniques for speeding up fault simulation provide
algorithmic enhancements [2] and development of special-
purpose hardware for fault simulation [3]. Fault injection
approach, which is based on a co-operation between a
simulator and an emulator, is presented in [4]. The number
of faults that need to be simulated can be decreased by
exploiting fault equivalence and fault dominance between a
pair of faults [5]. Fault collapsing is used to reduce fault
simulation time. It is the practice in which faults detected by
a pattern are deleted from the fault list prior to the
simulation of any subsequent pattern. Fault dropping
decreases the complexity of fault simulation, but cannot be
used for all fault simulation algorithms [6].

Fault simulation algorithms can be divided into serial,
parallel, deductive and concurrent [7]. Serial algorithms
simulate fault-free and faulty circuits and compare
responses. Such algorithms are easy to implement; need only
a true-value simulator, most faults, including analog faults,
can be simulated, but they use lots of repeated computation.
The parallel fault simulation takes advantage of multi-bit
representation of data and availability of bitwise operations
[8]. With each pass of the simulation, the fault-free circuit as
well as machine word length faulty versions is simulated in
parallel for a given pattern, but fault dropping cannot be
used. Deductive fault simulation is a one-pass simulation,
utilizes a dynamic data structures and 3-valued logic [9].
Computation rules are difficult to derive for complex gates
and gate delays are difficult to use. Concurrent fault
simulation is based on the observation that most values in
most of the faulty circuits match the corresponding values in
the good circuit [10]. Information about a fault will be
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entered in the fault list if at least one input or output of the
gate is different from that implied at the corresponding line
in the fault free version of the circuit. The fault is removed
from the fault list if the corresponding input/output values
are identical to that of the fault-free circuit.

Hardware fault simulation methodology and tools, using
partial reconfiguration, is suitable for efficient fault
modelling and simulation in FPGAs [3]. FPGA-based
hardware fault simulation using partial reconfiguration is
rewarding, as an alternative to software fault simulation,
reducing fault simulation costs. Method of increasing the
speed-up ratio of fault simulation in parallel test generation
is presented in [11]. The method is based on fault
partitioning.

Dynamic fault grouping based on fault activity is used in
both HOPE [12] and the PROOFS [13] systems. Faults are
grouped so as to initially detect more faults. Fault simulation
time is reduced to the principle discard the detected faults. A
Fault list is formed for all patterns. In this article, we'll offer
a new fault grouping for each pattern, and thus reduce the
fault simulation time. We did not find any articles describing
such an approach. The list of faults for patterns opens up
new opportunities to reduce fault simulation time for
functional test generation [14].

I1l. FAULT SIMULATION WITH A SEPARATE LIST OF FAULTS
FOR THE TEST PATTERN

Test T consists of a sequence of test patterns, where T =
<ty, t2, ..., ti, ..., tN>. In turn, a test pattern for sequential
circuits is a sequence of stimuli. The input data of the fault
simulation tool is a test T and the list of undetected faults
UF. Fault simulation program FS determines which faults of
the list UF are detected by test T and write them to the list of
DF, it is DF = FS (T, UF). The proposed fault simulation
acceleration procedure FSAP is shown in the Fig. 1.

1. T; UF; DF = @;

2. DOi=1(1)toN;

3. RS, := SIM(t);
UF: :=PA(RS,, UF);
DF, = FS (t, UF);
DF := DF U DF;
UF := UF / DF;:
8. END DO;

9. DFe:=FS (T, UF);
10.DF :=DF U DFg,
11.END;

S B

Fig. 1. Fault simulation acceleration procedure FSAP.

The first line of the procedure shows that the test T and
UF set of undetected faults are given, and in the beginning of
the procedure set DF of detected faults is empty. The cycle,
which analyses all test patterns include lines from 2 to 8.
Simulation of test pattern t; is carried out in the third line of
procedure and the results are denoted as RS;. UF; set of the
most likely faults that can be detected by test pattern t; is
calculated in the procedure PA of the fourth line. The
calculation is based on the simulation results RS; of test
pattern ti. Also set UF contains still undetected faults to be
assessed. Conventional fault simulation of a test pattern t;

63

with a set of expected faults UF; is done in the fifth line.
Calculated faults of the set DF; are added to the set DF (line
6), and are discarded from the set UF (line 7).

The sequence of test patterns T can detect more faults
than the one found in the analysis of individual test patterns.
Therefore the remaining undetected faults should be
analysed in the usual way, in order to determine which faults
can be detected by using a sequence of test patterns. There is
yet another reason. Generally, not all faults which are
detected on test pattern t; can be included in the set UF; (line
4). Final fault test simulation of whole T and of the
remaining undetected faults is shown in line nine. Faults that
have been detected during the final fault simulation are
added to the set DT of detected faults (line 10).

The size of the set UF of undetected faults which is left
for final fault simulation determines the possibilities to
accelerate fault simulation. It is obvious that the more faults
are detected by test T, the higher the chance to speed up the
fault simulation. Also, the smaller and more accurate set of
UF; is formed (line 4), the more fault simulation is sped up.
Fault simulation time is almost linearly proportional to the
amount of test patterns, when the amount of faults is fixed.
Also, fault simulation time is almost linearly proportional to
the amount of faults, when amount of test patterns is fixed.
UF; set of individual test patterns is less than the total fault
set of UF. Let's say that on average, UF; contains x % of the
set UF. In this case, the individual test pattern fault
simulation will take about x % of the time compared to the
case where all the faults are analysed. Total fault simulation
time can be shortened only when the final fault simulation
will analyze less than (100 - x) % of fault models. Therefore
the test T fault coverage must be no less than x %. This
limitation becomes irrelevant if we can assure that the set of
UF; has all the faults detectable by the test pattern. However,
the final fault simulation is still needed due to the fact that
the sequence of test patterns detects more faults than as
separate test patterns.

IV. EXPERIMENTS

In general, all the test patterns are constructed for the
detection of faults, when the initial circuit state is uncertain.
Side effects occur after the aggregation of test patterns in a
sequence and test pattern sequence can detect those faults
which are not detected by test patterns taken separately. The
scope of the additionally detected faults depends on a variety
of factors, and therefore the side effects are not sufficiently
explored. We also will not make such studies, but because of
a common perception we take just one example. First, we
look at how many more faults a test pattern sequence detects
over the individual test patterns, when the initial state is
uncertain. For this purpose, we analysed the CPU of
or_1200 processor. Tetramax tool automatically generated
1705 test patterns for the CPU. Test Generator showed that
collapsed 49116 transition faults were detected. Fault
simulation pointed out that the sequence of test patterns
detects 47957 collapsed transition faults. Fault simulation of
individual test patterns showed that they detect 41547
collapsed transition faults. Full set of fault UF was used in
this case.



TABLE I. THE DIFFERENCE DETECTED FAULTS FOR TEST PATTERNS FROM 1 TO 900.
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Patterns from 1 101 201 301 401 501 601 701 801
Patterns to 100 200 300 400 500 600 700 800 900
Patterns sequence 21583 6231 3461 1177 4815 3053 1080 855 1915
Separate patterns 13817 4528 3262 1731 3181 2969 1483 1269 2026
Difference -7766 -1703 -199 554 -1634 -84 403 414 111
TABLE II. THE DIFFERENCE DETECTED FAULTS FOR TEST PATTERNS FROM 900 TO 1705.
Patterns from 901 1001 1101 1201 1301 1401 1501 1601 Total
Patterns to 1000 1100 1200 1300 1400 1500 1600 1705
Patterns sequence 874 869 131 1417 198 304 318 188 47957
Separate patterns 1670 357 880 1501 748 644 617 352 41547
Difference 796 512 749 84 550 340 299 164 -6410

The difference between the detected faults sets have been
analysed in more detail. The quantities of detected faults
have been calculated for each one hundred of test patterns,
when the fault simulation was carried out for all test
sequences and test patterns individually. The results are
shown in Table | and Table II.

The third and fourth rows show the newly detected fault
quantities. The fifth row of the tables shows the difference
between the quantity of faults detected by the individual
simulated test patterns and by simulating the entire sequence.
Fault simulation of a homogeneous sequence of the first one
hundred test patterns detected 7766 more faults compared to
the individual test pattern fault simulation. This is very
surprising. Initially, the difference is mainly negative and by
increasing the amount of test patterns becomes positive.
Total maximum negative difference (-10382) was obtained
after analysis of 600 test patterns. 600 test patterns detect
about 40% of the CPU transition faults. Further the
difference decreases, and the difference should be negligible
when approaching test coverage of 100 %.

Final fault simulation can also use not all of the remaining
undetected faults, but only faults which can be verified by a
given test. Determining of faults undetectable by test can be
performed as well as by the individual test pattern. Now we
will discuss most likely detected or undetected faults with
regards to a given test.

Determining faults that are not detectable by the given test
may rely on such an assumption. The fault of a gate, which is
not detectable on output of the logic gate by a given test, is
not detectable by the test as a whole on the output of the
circuit. The values of gate outputs are set during the
simulation. Faults detected in gate output can be set with the
simulation. These faults can be detected by the test. Faults
that are not detected on output of the logic gate cannot be
dealt with on the basis of the assumption. Determining faults
detectable on output of the logic gate requires the addition of
a simulation program. Another way is an analysis of the
simulation results. Faults that are detected on output of the
logic gate are determined by the examination of simulation
results. Simplified rules can be used to speed up
calculations. We will discuss the potential impact of such
rules.

The rules that define faults found in output of the logic
gate depend on the fault type. It is easier to establish such
rules for transition faults, because they depend on changes in
values. More complex rules can evaluate not only the fault
detection on output of gate but also memorizing failure on
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triggers. Such rules are heuristic and appropriate in the
setting of only the most likely fault detection. Rules should
not require a lot of calculations, and should choose only
faults to be detected with high probability for normal fault
simulation. The rules are the main factor that determines
acceleration of fault simulation. Rules can be very different
and their benefits may be proven only in an experimental
study. This is not the purpose of this paper and is the object
of further study.

The gate transition fault is not detected if the signal that is
associated with the transition fault during test execution does
not gain values zero and one. We will use this simple rule in
an experimental study to assess the fault simulation
acceleration using the proposed procedure.

Let us first examine how the formation of the list of faults
of individual test patterns can speed up the fault simulation.
Fault lists were formed based on the simulation results and
the above rule. Ten first CPU circuit test patterns were
analysed. Results are presented in Table IlI.

The second line provides fault simulation time in seconds
for individual test patterns when the complete fault list was
used. The third line provides fault simulation time in
seconds for individual test patterns when the list of faults
was calculated on the basis of simulation results. The last
row shows the acceleration times. The last column
represents average acceleration.

We can see that the acceleration of individual test patterns
fault simulation is significant for the given circuit. Ten test
patterns of or 1200 processor have been analysed to
determine the change of acceleration trend when increasing
the size of circuits. Results are presented in Table IV. We
can see that the average acceleration increased. We hope
that with the increasing size of the circuit, fault simulation
acceleration also increases when their fault lists are formed
for individual test patterns. This trend is encouraging.

In general, the list of faults can be formed not only for the
individual test pattern, but for several test patterns. The
results of this study on the CPU circuit are presented in
Table V. Results are presented in groups of ten test patterns.
We see that the acceleration of fault simulation decreased
when the fault lists are formed for groups of test patterns.
However, one can expect that in this case more faults will be
detected than when examining only the individual test
pattern.

In general, the best way to achieve maximum test
coverage is the use of test patterns, each of which starts from
the undefined state.
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TABLE Ill. COMPARISON OF FAULT SIMULATION DURATION OF THE CPU CIRCUIT

Patterns 1 2 3 4 5 6 7 8 9 10 Aver.

Full list 13.8 10.4 10.9 12.8 11.1 135 10.9 10.7 11.1 114 129.4
Formed list 2.4 1.8 1.7 1.9 2.1 2.4 2.0 2.3 2.7 2.6 21.9
Times faster 5.8 5.8 6.4 6.7 5.3 5.6 4.7 4.7 4.1 4.4 5.9

TABLE IV. COMPARISON OF FAULT SIMULATION DURATION OF THE OR_1200 PROCESSOR CIRCUIT

Patterns 1 2 3 4 5 6 7 8 9 10 Aver.

Full list 9818 10037 12496 12418 12747 9937 9949 9913 12411 10008 109734
Formed list 475 549 691 756 715 546 459 475 502 723 5891
Times faster 20.6 18.3 18.1 16.4 17.8 18.2 21.7 20.9 24.7 13.8 18.6

TABLE V. COMPARISON OF FAULT SIMULATION DURATION BY USING SEQUENCES OF TEST PATTERN

Patterns 10 20 30 40 50 60 70 80 90 100 Aver.

Full list 91 89 84 76 74 79 80 70 57 63 763
Formed list 33 35 32 31 31 35 35 30 25 30 317
Times faster 2.8 25 2.6 2.5 2.4 2.6 2.3 2.3 2.3 2.1 2.4

Exploitation of side effects based on the fact that the
sequence of test patterns detects additional faults is
appropriate only when the separate test patterns cannot
increase the test coverage. Also minimizing test length is
difficult because the emission of test pattern, which does not
detect new faults in the sequence, can change the fault
coverage of whole patterns sequence.

List of faults can be formed according to the simulation
results of all test pattern. Is it possible to guarantee that the
faults are undetectable by the given test, if not entered into
formed list? It depends on the rules for forming the fault list.
We conducted an experiment using a rule; the transition fault
can be detected by the given test if the electrical circuit of
the fault had signal values zero and one.

We made the list of faults under the above rule for CPU
circuit and for the 900 test pattern. A list of 92706 possible
detectable faults was formed. CPU circuit has 126,986 faults
in total. Fault simulation has detected the same amount of
44194 faults on both lists. Fault simulation, with a partial list
took 40 percent less time in comparison with fault simulation
with a full list. Naturally, the experiment cannot prove that
the faults that were omitted under the rule really are
undetectable. However, there is hope that the rule allows the
selection of the majority of the faults that are potentially
detectable.

Fault simulation acceleration based on the proposed
procedure is based on rules that generate a list of faults of
individual test patterns. These rules also determine whether
the final faults simulation is required. In the future, such
rules should be investigated in more detail.

V. CONCLUSIONS

Creation of separate lists of faults for test patterns reduces
the fault simulation time. Fault lists of test patterns are
drawn on the basis of simulation results of test patterns.
Fault simulation time is proportional to the size of fault lists
of test patterns. Fault list size determines the rules by which
they are formed based on the simulation results of test
patterns. Final fault simulation with the remaining
undetected faults is necessary if the rules do not guarantee
that all detected failures were included in the lists. Creation
of individual fault lists is based on the assumption that the
faults which are undetectable on the logic gate outputs are
undetectable on circuit outputs as well. The sequence of test
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patterns can detect faults that are undetectable by analysing
individual test patterns. This side effect occurs mostly when
the fault coverage of the test is low. Influence of side effects
decreases with increasing coverage of faults. The fault
simulation acceleration increases with the size of circuits.
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