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 

Abstract—In this paper we address the optimization of the 

support region threshold of the µ-law companding quantizer 

designed for the Laplacian source of unit variance. We propose 

a new iterative method of determining the support region 

threshold, based on Newton's method. We provide a simple 

manner for determining the support region threshold. 

Numerical results show that the proposed new approach to the 

observed optimization problem outperforms the recently 

proposed method in terms of the relative error of determining 

the support region threshold. This indicates the usefulness of 

the proposed approach. 

 
Index Terms—Newton method, optimization methods, 

quantization. 

I. INTRODUCTION 

The logarithmic compressor characteristic obtained by 

piecewise linear approximation to the µ-law characteristic is 

widely used as a design guideline for nonuniform 

quantization of speech signals in digital telephony [1]. 

Specifically, to achieve high-quality quantized speech 

signals, the contemporary public switched telephone 

networks utilize the piecewise linear approximation to the µ-

law characteristic proposed by the G.711 Recommendation 

[1]. The problem that generaly occurs in designing 

quantizers, including µ-law companding quantizers, is how 

to provide the simple manner of determining the support 

region threshold of the quntizer to minimize distortion 

introduced in the quantization process. Namely, the quality 

of a quantized signal, measured by distortion or signal to 

quantization noise ratio (SQNR), is generally influenced by 

the width of the quantizer’s support region and the number 

of quantization levels [2]–[4]. One of the main goals when 

designing quantizers is to determine the reproduction levels 

and the partition of the support region into cells, such as to 

provide the minimum possible distortion for a fixed number 

of quantization levels N, or a fixed resolution R = log2N. It 

has been pointed out in [3], [4] that determining the support 

region threshold is a key issue in a quantizer designing. 

Since the support region threshold xmax and accordingly 
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defined the support region of a quantizer [−xmax, xmax], 

should be determined so that the support region is the 

interval where quantization errors are small, or at least 

bounded, a fast and accurate estimate of the support legion 

that minimizes the distortion is very useful in quantizer 

designing [3], [4]. 

The goal of this paper is to propose a closed-form formula 

for the optimal support region determination of the µ-law 

companding quantizer designed for the Laplacian source of 

unit variance. The observed optimization problem has 

already been addressed in [5], where optimization of the 

support region threshold of the µ-law companding quantizer 

has been performed under the constraint that compression 

factor µ has a large enough value. Observing this constraint, 

our goal is to provide a solution to the optimization problem 

that would be efficiently applicable for any compression 

factor value. In addition, our goal is to decrease the relative 

error of determining the support region threshold that has 

been calculated in [5]. In order to determine the optimal 

support region threshold the application of iterative 

numerical methods is required. In this paper, Newton’s 

method of root-finding is applied with the goal to provide a 

simple manner of determining the optimal support region 

threshold of the µ-law companding quantizer in question. It 

is shown that Newton’s method is a convenient iterative 

method for our optimization problem because it starts with 

an initial guess, which is reasonably close to the true root, 

and only after one iteration, for different values of the 

compression factor μ, it provides a smaller relative error of 

determining the support region threshold compared to the 

related relative error calculated in [5]. 

The rest of this paper is organized as follows. Section II 

provides a detailed description of the proposed simple new 

approach to the problem of optimizing the µ-law 

companding quantizer designed for the Laplacian source of 

unit variance. The achieved numerical results are the topics 

addressed in Section III. Finally, Section IV is devoted to 

the conclusions which summarize the contribution achieved 

in the paper. 

II. OPTIMAL DESIGNING µ-LAW QUANTIZER USING 

NEWTON’S METHOD 

An N-level scalar quantizer Q is defined by Q: R  Y [1], 
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where R is a set of real numbers, and 

 1 2 3, , ,..., NY y y y y R   is a set of representation levels 

that makes the code book of size │Y│ = N. An N-level 

scalar quantizer partitions the set of real numbers into N 

cells Ri = (ti-1, ti], i = 1, …, N, where ti, i = 0, 1, …, N are 

decision thresholds and where it holds Q(x) = yi, x Ri. 

 

x Qu(c(x)

) 

x̂

 

c(x) 
c(x) Qu c

-1
(x) 

 
Fig. 1.  Block diagram of companding technique. 

Companding technique, we consider in this paper, defines 

the following steps: compress the input signal x by applying 

the compressor function c(x); apply the uniform quantizer on 

the compressed signal Qu(c(x)); expand the quantized 

version of the compressed signal using an inverse 

compressor function c
-1

(Qu(c(x))) [1] (Fig. 1). µ-law 

companding quantizer Qμ, which we consider in this paper, 

is defined by µ-law compressor function c(x): 

[−xmax, xmax] → [−xmax, xmax] [1] 
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where the parameter μ is the compression factor and xmax is 

the µ-law companding quantizer’s support region threshold. 

The process of quantization performs as follows: 
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where x and x̂  denote an original and a quantized signal, 

respectively. 

The total distortion is a quality measure of quantization 

process and can be found as a sum of the granular and the 

overload distortion. In general, distortion D, defined as a 

sum of a granular distortion Dg and an overload distortion 

Do, is given by [1]: 

 g oD D D  , (5) 
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For the assumed Laplacian probability density function 

(PDF) [1] 
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the expressions for the granular and the overload distortion 

of the µ-law companding quantizer are as follows [5], [6]: 

    















 1

21

3

1ln max
2

2
max

22

22

g





xx

N
QD , (9) 

  


















max2
o

2
exp

x
QD . (10) 

Distortion is then given by 
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Without diminishing the generality, in what follows the 

quantizer designing will be done for the reference input 

variance of 2 1ref  . Accordingly, we proceed to optimize 

distortion determined for the unit variance 
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with respect to xmax, where c = ln
2
(µ+1)/(3N

2
) is a constant. 

By setting the first derivate of the distortion given by (12) to 

zero with respect to xmax, we obtain: 
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To provide the solution of our optimization problem we 

apply Newton's method [7], [8] 
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Newton’s method is a generalized process to determine a 

root of a system (or a single) of equations f(x)=0 [7], [8]. It 

is a method for determining successively better 

approximations to the roots (or zeroes) of a real-valued 

function. Newton’s method is not only the method easy to 

comprehend, but it is a very efficient way to find the solution 

to the equation. Newton’s method requires that the 

derivative be calculated directly. An analytical expression 

for the derivative may not be easily obtainable and could be 
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expensive to evaluate. In our case, it is simple to determine 

the derivative of f(xmax) so that the application of Newton’s 

method is suitable for our optimization problem. 

We initialize the iterative method using the support region 

threshold of the µ-law companding quantizer derived in [5] 

for the cases when the compression factor has an arbitrary 

large value 
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By combining (15) and (16) we obtain 
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Geometrically, (
 1
max
i

x


, 0) is the intersection with the xmax -

axis of a line tangent to f at (
 
max
i

x , f(
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i

x )). 

The relative error of determining the support region 

threshold can be defined as follows 
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where opt
maxx  is obtained by numericaly optimizing the 

support region threshold of the quantizer in question so that 

to provide the minimum of the distortion (12). Note that our 

goal is to provide the solution to the optimization problem 

that would be efficiently applicable for any compression 

factor value. In fact, our goal is to decrease the relative error 

of determining the support region threshold that has been 

calculated in [5] 
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This is of great interest especially for arbitrary small 

values of compression factor. In what follows discussion is 

provided about the relative error of determining the support 

region threshold by following the proposed approach and the 

one given in [5]. 

III. NUMERICAL RESULTS 

This section provides us with a detail analysis of the 

numerical results that we have calculated for the considered 

µ-law companding quantizer and the proposed Newton’s 

method of determining the support region threshold. 

Specifically, in this section, for some arbitrary values of the 

compression factor µ, the values of the support region 

thresholds, which we have ascertained by applying the 

proposed approach, are compared with the corresponding 

ones calculated following the approach from [5]. 

The relative error of determining a root value is usually 

appointed criteria for stopping an iterative algorithm. In our 

approach to support region determination, as a baseline, we 

initialize the iterative method, using the support region 

threshold 
 0
maxx  derived in [5], for the cases when the 

compression factor has an arbitrary large value. Note that 

once we have 
 0
maxx  [5], and we accept the accuracy of 

determining the support region threshold in the first decimal 

place, the applied Newton's method, stops after the first 

iteration in all of the observed cases of the assumed 

compression factor values, except in the case where µ has 

very small value (µ = 10). 

TABLE I. THE VALUES OF 
opt
maxx , [5]

maxx AND 
 1
maxx  FOR µ =255 AND 

N = 256, N = 128, N = 64, N = 32, N = 16 

N opt
maxx  [5]

maxx  δ[5][%]  1
maxx

 
δ(1)[%] 

256 10.076 10.115 0.381 10.075 0.011 

128 9.1 9.134 0.379 9.099 0.013 

64 8.123 8.154 0.384 8.122 0.008 

32 7.146 7.174 0.391 7.146 0.001 

16 6.170 6.194 0.384 6.169 0.008 

TABLE II. THE VALUES OF 
opt
maxx , [5]

maxx AND 
 1
maxx  FOR µ =100 AND 

N = 256, N = 128, N = 64, N = 32, N = 16 

N opt
maxx  [5]

maxx  δ[5][%]  1
maxx  

δ(1)[%] 

256 9.622 9.712 0.938 9.616 0.062 

128 8.651 8.732 0.943 8.646 0.056 

64 7.679 7.752 0.950 7.675 0.050 

32 6.708 6.772 0.955 6.705 0.044 

16 5.736 5.791 0.962 5.734 0.037 

TABLE III. THE VALUES OF 
opt
maxx , [5]

maxx AND 
 1
maxx  FOR µ =50 AND 

N = 256, N = 128, N = 64, N = 32, N = 16 

N opt
maxx

 
[5]
maxx

 
δ[5][%]  1

maxx
 

δ(1)[%] 

256 9.284 9.449 1.776 9.264 0.219 

128 8.319 8.469 1.796 8.303 0.199 

64 7.355 7.488 1.816 7.342 0.180 

32 6.391 6.508 1.839 6.380 0.158 

16 5.427 5.528 1.861 5.419 0.136 

TABLE IV. THE VALUES OF 
opt
maxx , [5]

maxx AND 
 1
maxx  FOR µ =10 AND 

N = 256, N = 128, N = 64, N = 32, N = 16 

N opt
maxx  [5]

maxx  δ[5][%]  1
maxx  δ(1)[%] 

256 8.454 9.010 6.578 8.191 3.111 

128 7.518 8.030 6.813 7.300 2.898 

64 6.584 7.050 7.068 6.409 2.665 

32 5.654 6.069 7.348 5.518 2.411 

16 4.727 5.089 7.657 4.626 2.130 

 

In that case, the relative error of determining the support 

region threshold for N = 16, N = 32, N = 64, N = 128 and 

N = 256 ranges from 2.130 % to 3.111 % and is much 

smaller than the one calculated following the approach from 

[5], which ranges from 6.578 % to 7.657 %. Since the initial 

value 
 0
maxx  is derived for an arbitrary large value of 

compression factor µ, it is expectedly that our method 

converges fastest to the root value opt
maxx , with the smallest 

relative error δ
(1)

, in the case where the compression factor 

amounts to µ = 255. Table I shows that, for a different 

number of quantization levels N (N = 16, N = 32, N = 64, 

N = 128 and N = 256), the near optimal support region 

thresholds 
 1
maxx

 

can be determined by following the 
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proposed approach 
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where reasonably higher precisions are achieved compared 

to the related precisions calculated in [5]. Obviously, in this 

paper we end up with the meaningful formula (20) that 

provides straightforward computation of the near-optimal 

support region threshold of the µ-law companding quantizer 

designed for the Laplacian source of unit variance. 

By observing Tables II, III and IV, one can notice that for 

moderate and arbitrary small values of compression factor µ 

(µ = 100, µ = 50 and µ = 10), the relative error of 

determining the support region threshold δ
(1)

 ranges 

approximately from 0.04 % to 2.13 %, for N = 16 and from 

0.06 % to 3.11 %, for N = 256. One can also conclude that 

for a given value of the compression factor µ , the decrease 

of the number of quantization levels N results in the decrease 

of the relative error δ
(1)

. This indicates that the proposed 

approach can efficiently be applied for small number of 

quantization levels as well. Eventually, observe that there is 

the oposite effects in the case of the application of the 

approach from [5]. Specifically, in that case, for a given 

value of the compression factor µ, the decrease of the 

number of quantization levels N results in the increase of the 

relative error δ
[5]

, which possible limits the application of the 

approach from [5] not only for the cases of small values of 

compression factor µ, but also for small values of the 

number of quantization levels N. Based on the all above 

mentioned, there is evident advantage of the proposed 

method in comparison with the one given in [5]. 

IV. CONCLUSIONS 

Since one of the main goals when designing quantizers is 

to provide as high as possible quality of the quantized signal, 

which is generally influenced by the width of a quantizer’s 

support region and the number of quantization levels, the 

proposed approach, which has proven to be an effective 

method, capable of significantly increasing the precision for 

determining the support region threshold, is of great 

impotance. As the proposed method allows explicit and 

simply determination of the support region threshold of the 

µ-law companding quantizer having value near the optimal 

one, and for any compression factor value it outperforms the 

method proposed in [5], one can conclude that the 

importance of the proposed method is really high. 
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