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1Abstract—This paper presents an observation and control
design methodology for a three-phase induction machine using
a robust control technique. The state estimation and parameter
identification of electrical motor are the main problem of the
high-performance industrial application of electric drives. We
propose a robust solution for real-time estimation of the rotor
flux as well as the rotor speed. Indeed, to achieve a robust
performance for the rotor flux observer, a H∞ synthesis
technique with pole placement will be used. The observer gain
matrix is calculated by solving a convex optimization problem.
The proposed solution has been tested and validated by an
experimental set-up on a 3 KW squirrel age induction motor.

Index Terms—Full-order observer, LMI, induction
machine, robust control, sensorless control, vector control.

I. INTRODUCTION

This paper aims at the study of the simplest and most
economical sensorless speed control strategy for induction
motor drives. In the literature, two high-performance control
schemas are proposed and successfully implemented for the
induction machine: direct torque control (DTC) [1] and
field-oriented control (FOC) [2], [3]. Both control strategies
aim to overcome the coupled structure between the dynamics
of the electromagnetic torque and flux, in order to provide
the same performance and flexibility of a DC machine [4].
Classical FOC is highly sensitive to parameter disturbances.
To overcome these drawbacks, many researchers are trying
to propose different control schemes over the last three
decades. In this paper, we propose a solution based on linear
matrix inequality (LMI) framework, to provide a robust rotor
flux observer of the induction motor. Furthermore, based on
the notion of quadratic H∞ performance, a robust self-gain
scheduling observer design method results from the
constraint satisfaction stability and takes into account certain
performance specifications for all admissible trajectories of
the rotor speed.

II. MATHEMATIC MODELING OF INDUCTION MOTOR

In this section, we present the mathematical model of the
induction motor in a (α–β) reference frame fixed to the
stator. This model is developed in [5] under the assumption
that the motor has a linear magnetic circuit. The nominal
parameters of the induction motor used are given in Table I.
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The per-phase equivalent circuit of the machine is shown in
Fig 1, and its dynamic model is given by the following
mathematical equation:
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where
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s s r rx i i        ,

   2 21/ 0
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sB L I     and  2 20C I  .

The relationship between the developed torque (Ce), load
torque (Cr) and the dynamics of the rotating speed (ω) is
defined as follows

  / .e rp Jm C C  - (2)

Fig. 1. Per phase steady-state equivalent circuit of induction motor in
arbitrary rotating reference frame.

The electromagnetic torque Ce can be expressed
according to the rotor flux and stator current as follows

  3 / 2 .e r r r r rC p M L i i     - (3)

III. FIELD-ORIENTED CONTROL WITH INDUCTION MACHINE
LOSSES MINIMIZATION

In d–q reference frame locked to the rotor flux vector
rotating at the stator frequency (ωe = ωs), the
electromagnetic torque (3) can be re-expressed as follows

   3 / 2 - .e r rd rq rq rdC p M L i i   (4)

When the direct axe of d–q frame is aligned with the rotor
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flux vector (λr = λrd), the developed torque is defined by

  3 1/ 2 λ .e r rd rqC Mp L i (5)

The dynamics of the rotor flux are expressed by the first
order differential equation given by

λ
λ - .rdr

rd Ld
r

dLMi
R dt

 (6)

The synchronous angular speed can be calculated as
follows

 rdλ/ .s r r LqMR L i p   (7)

In [6] an optimization algorithm of electrical energy
dissipation of the drive system has been proposed. Below is
a reminder of the expression of the optimal flux magnitude

      2 / 3 / ,ropt r q d CeL p R R  (8)

where the constants Rd and Rq are:

    2 / ,d sR R s r cM R R   (9)

  .q s s cR R R R r cR R   (10)

IV. ROBUST ADAPTIVE ROTOR FLUX OBSERVER

In this section, we present the design of a robust observer
for a three-phase squirrel cage motor. The rotor speed
estimator will be equally presented.

A. Adaptive Scheme for Speed Identification
According to (1), we can redefine the state space of

induction motor as follows:
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From the state equation given above (11), we adopt a
Luenberger state observer by the following equation:
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In the remainder of this paper, the uncertain matrices Â
and B̂ are split into two parts; the first one corresponds to
nominal parameters and the second one to unknown

behavior and marked Δ (*). According to (11) and (12) the
dynamics of state estimation error  ˆ -e x x under the

assumption B̂ B , can be described as follows

    ˆ,e A HC A e A A x         (13)

where
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,

̂     .
Δ Rs and Δ Rr are the mismatch part of the stator and rotor

resistances respectively. To guarantee the stability of the
proposed observer (12), we impose a convergence
sufficiently fast and robust of the estimation error to zero. In
fact, we impose a gain for the transfer function from the
disturbances to the estimation error maximized by a positive
L2–gain. Therefore, for a positive γ we suppose that
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e
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w
 (14)

where ˆwB w Ax  is the disturbance signal and Bw being
the input error matrix with appropriate dimensions.

To simplify the design of the speed adaptive mechanism,
we neglect the influence of dynamical matrix uncertainty on
the dynamics of the estimation error in this section.

Based on the Lyapunov theory [7], [8], the sufficient
condition for the asymptotic stability of (13) is to find a
Lyapunov candidate function V, where V is continuous,
positive definite and differentiable. And where the time
derivative of V is defined as negative.

The positive definite function is defined below

   2 /, .TV e e e      (15)

Under the assumption that the induction motor is
considered a slow time-varying system, the time derivative
of V is expressed by the following equation

  1, ,TV e e e V    (16)

where    TA A HC A A HC        and

 1
1

ˆ ˆ 2T T T dV x A Pe e PA x
dt 

 



 

    .

By the Lyapunov stability theory, the system is
asymptotically stable if the time derivative of V is negative
definite

  1, .TV e e e V    (17)

The first condition of Lyapunov is

 ˆ ˆ 2 0.T T T dx A e e A x
dt 

 



 

    (18)

The time derivative of the rotor speed is given as follows
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ˆ- .Td e A x
dt 


 (19)

To estimate the rotor speed, we adopt the adaptive law
given by the following equation

   ˆ ˆ ˆ ,T T
pv ivK e A x K e A x dt     (20)

where Kpv and Kiv are the arbitrary positive gains.
The second condition of Lyapunov theorem is

    0.TA A HC A A HC        (21)

The equation (21) is considered as a convex optimization
problem.

B. Observer Gain Calculation
The previous subsection shows the existence of an

estimator of the mechanical speed of the motor. This
existence is based on the search of a gain matrix H which
meets the second condition of Lyapunov (21). The gain
matrix H has two purposes; the first objective is to guarantee
the stability of the mechanical speed estimator. Based on its
definition, the second objective of the matrix H is to ensure
the overall stability of the observer defined by (12) on the
one hand, and on the other hand to ensure some dynamic and
static performances of the proposed observer. Indeed the
calculation of observer gain H is deduced from some
constraints on the dynamics of the observation error; these
constraints are transformed into a convex optimization
problem. The first constraint is given by (14), so we impose
an L2–gain performance on the dynamics of the observation
error. This can be interpreted as an extension of H∞ control
problem [9], [10]. Indeed, for the extended form of the
estimation error given in (22), the design problem is to find a
stabilizing matrix H and ensure the disturbance attenuation
performance requirement for the sub-system G(s), where
G(s) is the transfer function (23) of the canal w e :

  ,we A HC A e B w     (22)

    1 .wG s sI A HC A B     (23)

According to [9], the attenuation requirement (24) holds
for some positive finite γ, if the dynamic system (24) has a
state feedback H∞ controller H, if and only if there exists

0TX X  to make the satisfaction of the following LMI
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The bilinear matrix inequality (24) with unknown matrix
H and X, can be transformed on a linear matrix inequality by
using the variable change W = XHC. The inequality (24) is
re-written as follows
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(25)

To improve the dynamic and static performances of the
proposed observer, we impose some constraints on its eigen
values. We define the pole placement region  , ,d r D by
the intersection of three LMI regions. The first region is the
disk centered at the point (0, 0) with radius r. The second
region is the conic sector on the left-half complex plane with
the apex at the point (0, 0) and inner angle 2θ, where
0 / 2   . The last region, is the left-half complex plane
such as  z d Re where d is a positive real constant. For
a complexe pole n ds j    of our observer, where

0 1  is the damping ratio, n s  is the natural

frequency and 21d   is the damped frequency. The
first region maximizes the natural frequency of the complexe
pole “s” by maxn r  . So this constraint impose a
homogenous dynamics for all observer poles. If the pole “s”
is enclosed in the second region, then it’s minimum damping
ratio is  sin  . This constraint minimizes they settling
and rise times. The third region guarantees a minimum decay
rate “d” for the observer. Made in the choice of pole
placement region enhances the performance of uncertain
system.

Fig. 2. State observer of induction motor.

Fig. 3. LMI region.

According to [9], if we are using the variable change
W = XHC, the poles of the system G(s) enclosed in the disk
 , ,d r D are equivalent to the existence of a solution

0TX X  as:

2 0,T TA X XA W X W d      (26)
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By using the Matlab LMI Toolbox, we can solve the
LMIs described in (25)–(28). The observer gain matrix is
deduced by the following equation

1 1.H X WC  (1)

V. EXPERIMENTAL SETUP AND RESULTS

To validate the performances of the proposed solution, an
experimental test is performed by using the Matlab/Simulink
framework and the DS1104 board (Fig. 4). The used
induction motor is a 3.1 KW, three-phase squirrel cage
machine. The machine parameters are given in Table I. The
experimental platform scheme is shown in Fig. 4. The drive
system is fed by a Semikron IGBT voltage source inverter.
To achieve the energy optimization, the motor is driven by
DFOC strategy. The overall diagram of the vector control is
shown in Fig. 5.

TABLE I. INDUCTION MOTOR NOMINAL PARAMETERS.
Symbol Description Quantity UOM

Rs Stator resistance 2.3 Ω
Rr Rotor resistance 1.8 Ω
Ls Stator inductance 261 mH
Lr Rotor inductance 261 mH
M Mutual inductance 245 mH
σ Leakage factor 0.134 –

Jm Moment of inertia 0.22 Kgm2

f Friction coefficient 0.001 –
p Number of pole pairs 2 –

Fig. 2. A schematic platform for rapid prototyping.

Fig. 3. Direct field-oriented control of three-phase AC induction motor.

Based on the command signals generated by the field-
oriented control “FOC” block, the Adaptive Space Vector
Modulation (ASVM) [6] block drives the three phase
inverter and optimizes its electric energy dissipation. The
block “adaptive observer” ensures at the same time the
motor state as well as speed estimation. The block ‘ωl

estimator’ provides the slip frequency. Figure 6 illustrates
the simulation results of the real and estimated rotor speed
under a load torque Cr = 10 Nm. Figure 7 and Fig. 8 show
the actual and estimated variation of α and β components of
the rotor flux respectively. The proposed robust observer
can accurately estimate the rotor flux.
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Fig. 4. Rotor speed tracking performance using the proposed solution.
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Fig. 5. Estimated and actual rotor flux λα.

22.6 22.8 23 23.2 23.4 23.6 23.8 24
-1.5

-1

-0.5

0

0.5

1

1.5
Actual and Estimated Rotor Flux

Time (s)

6 -
; 6̂
-
(W
b)

Actual Estimated

Fig. 6. Estimated and actual rotor flux λβ.

Fig. 7. Stator current in the α–β reference frame.

Fig. 8. Stator voltage in d–q frame.
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Fig. 9. Rotor speed tracking.

The last three figures show the experimental results.
Figure 9 gives the wave form of the stator currents in the α–
β reference frame. The stator current takes appropriate form
and value. The stator voltage in the d–q reference frame is
shown in Fig. 10. Figure 11 presents a perfect tracking of the
mechanical speed.

VI. CONCLUSIONS

The aim of this paper is to design a sensorless vector
control for a three-phase induction motor based on a robust
state estimation. The proposed solution attempts to minimize
the effect of parameter uncertainty and unmodeled dynamics
of induction machine on the performance of the vector
control algorithm. The observer gain matrix calculation is
provided by solving an LMI deduced from the H∞ control
theory and closed-loop pole clustering constraints. The
speed adaptive mechanism is used to provide a real-time

tracking of real rotor speed. The proposed solution is
verified by numeric simulation and experimental
investigation. The stability and robustness of the proposed
method are guaranteed.
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