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Abstract—In this paper we propose a novel method for 

feature extraction tasks. The algorithm contains three stages: 

quantifying of feature difference to determining the importance 

of all features; constructing a feature extraction model 

according to the traditional nearest neighbour principle and 

optimizing this model using gradient based methods. 

Experimental results on benchmark data set have validated the 

effectiveness of the proposed method.  

 
Index Terms—Feature extraction, kernel machines, image 

processing.  

I. INTRODUCTION 

Kernel machines play an important role in modern 
engineering applications, but one challenging problem is 
how to obtaining important features. This is essential in 
exploratory data analysis, where we need to map data onto a 
kernel feature space. Obviously, it can be achieved either by 
selection methods [1], [2] or transformation [3]–[5] from the 
input space. The former keeps only useful features and 
discard others, and the latter constructs new features from 
the input spaces. However, algorithms that perform feature 
selection often lead to a combinatorial problem since all 
features need to be evaluated, but feature extraction only 
need certain criterion related to the performance of 
classifiers that can reflect the importance of a feature or a 
number of features. A further motivation for transforms is 
the ability to extract distributed relevant information across 
several original features, which produces a sparse 
representation. 

High-dimensional data are nowadays found in many 
applications areas: image and signal processing, biological 
and medical data analysis, etc. The availability of traditional 
methods to these areas is in general more difficult to analyse, 
because of the curse of dimensionality, but not for kernel 
methods. 

In this paper, we consider the problem of extracting 
significant features by a new framework based on kernel 
methods. Our contributions are as follows: (1) It can extract 
high order statistics and nonlinear discriminative features; 
(2) It can avoid the high time usage associated with the 
traditional eigendecomposition problem; (3) The classic 
criterion mutual information (MI) can be derived within the
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proposed method, and it can be extended to other kernel 
machines easily. 

II. BACKGROUND AND PRIOR WORK 

In general, feature extraction algorithms require certain 
criterions. Recently, research has been done on using 
different objective functions to address this problem. For 
example, Ref. [6] described a generalized discriminant 
analysis (GDA) method, which depends on the 
eigendecomposition of the kernel matrix, which bears high 
computational complexity. Invoked by this problem, Ref. [7] 
used a low-rank approximation to a complete 
eigendecomposition of the kernel matrix. Relatedly, Ref. [8] 
proposed a kernel based nonlinear feature extraction, which 
transforms this problem to a kernel parameter learning 
problem. Ref. [9] presented a method for learning 
discriminative feature transforms using as criterion the MI 
between class labels and transformed features. Another 
recent paper by [10] employed conditional information and 
information losses to extract main features in input features. 

However, the similarity measure in many of these papers 
depends only to the Euclidean measure. When samples have 
equal Euclidean distances to training samples, the kernel 
mapped the samples into the same vectors. This may not 
perfectly fulfill the purpose of classification-oriented feature 
extraction[11], [12]. On the other hand, MI according to 
Shannon’s definition is computationally expensive.  

III. THE MAIN ALGORITHM 

In this section, we describe our method as KFE (Kernel 
Feature Extraction), which trained with training data X and 
its class label set C . After the kernel matrix is obtained, the 
algorithm has three stages. In the first stage, we define a 
function to quantification of the feature difference. In the 
second stage, we derive the objective function for feature 
extraction. Then, gradient learning is used to optimize the 
objective function and find the optimal coefficient matrix. 

In the first stage of KFE, we propose an informative 
energy model. The main idea is that we quantify the 
difference between features according to their graph energy. 
Our goal is to transform the kernel space so that the distance 
in the transformed space correlated with the difference of the 
labels of features. So, we need to define informative energy 
for our method. 
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For the feature ( )ci ciy xφ= in the kernel space, we define 

its informative energy according to the graph energy model. 
The main difference is that we consider each feature in the 
kernel space as a particle, and pull or push other particles in 
this space. This means that the resultant effect of a particle is 
the sum of the separate effects between the same class and 
the different classes. For each feature we defined two 
informative energy functions: similar and dissimilar energy. 
For the features in the same class, the similar energy is 
computed as follows 

 2
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where I  is the identity matrix, G  is the Gaussian kernel 
function, σ  is the kernel width parameter. 

Then the dissimilar energy considering features between 
different classes is computed as 
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These two energy functions vary between 0 and 1. A 
high

c
E indicates that two features in the same class are quite 

similar. We can use these two values to quantify the 
difference between any feature pairs. 

In the second stage, we derive the objective function for 
feature extraction. In order to improve the performance of 
the projection and classification, we need to move the 
features in the same class as close as we can. Meanwhile, the 
features belong to different classes are push away as far as 
possible. 

As mentioned above, we have the simple idea 
that ( )c ciE y should as large as possible, 

and ( )p c ciE y≠ should be as small as possible. This can 

ensure the separation between the different classes and the 
aggregation within the same class. Then, the total resultant 
effect can be computed as 

 
1 1

1
( ) ( ) (1 ) ( )

c cN J

c ci p c ci
c i

E y E y E y
N

α α ≠
= =

= − −∑ ∑ , (3) 

where 
22

11
1 1

c pNc
p
p c

JJ

k k
α =

≠

    = − +      + +    
∑  presents the effects 

from the same class and the different class, k is the number 

of neighborhood of 
ci

y . The first term ofα means effects of 

all features to
ci

y , the second term means effects of other 

features to 
ci

y except the features in class c . 

However, ( )ci ciy xφ= cannot be computed explicitly. So 

we transform it to a coefficient matrix learning problem. In 
the kernel space, we can project

ci
y into a new feature space, 

and define this space as F for simplicity. Owing to the kernel 
trick, we can modify

ci
y as following 
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where K is the kernel matrix, ( , )
i j ij

K x x k= , β is the 

coefficient when project the original
ci

y onto the direction v . 

In this form, we can compute the variables pl ciy y− in (1) 

and (2) as 
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where elements of B is constructed by β as well as the kernel 

matrix. 
In the third stage, we need to employ optimization 

methods to maximize the objective function (3). There are 
many algorithms we can use, such as traditional quotient 
method of GDA, but it bears eigendecomposition problem, 
which may result in high computational complexity. 

Substituting (5) into (3), we can transform the feature 
y learning problem to the coefficient matrix B learning 

problem as follow 
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Maximizing (6) creates a transformed feature space with 
wide separation of the different class and better clustering of 
the same class. The gradient for the objective function is 
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substituting (8) (9) and (10) into (7), we can obtain the 
gradient of the objective function. 

Maximizing the objective function (6) using gradient 
ascent algorithm [13]–[16] as following 

 1
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d d d
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yE E
B B B

B y B
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∂ ∂ ∂
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From (11), the final coefficient matrix B  can be obtained, 
and can be used for classification and projection. 

As mentioned above, we can found that our KFE meets 
with the gradient of linear invariability: 

Theorem 1. (Gradient of linear invariability) when 
computing the energy of KFE according to (7), the 
optimization of energy function is independent of mapping 
φ  of the kernel methods, and this nonlinear transformation 

can be linearized during the gradient ascent process. 
Proof. When kernel transformation is introduced into (6), 

we can found that the gradient optimization of KFE’s energy 
needs computing items 

ci
y B∂ ∂  and 

ci
E y∂ ∂ : 

1) The first term can be computed according to the (10); 
2) The second term can be derived from the (8) and (9). 

The (1) is computed by the Gaussian function as 
following 
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Then, the partial derivative of the Gaussian function is 
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Combining this equation and (4), we can found that kernel 
transformation can be introduced into this optimization. 

As mentioned above, the gradient of energy function can 
be rewritten as the function of the terms cq ciy y−  and 

pq ciy y− . The partial derivative of cq ciy y− can be 

computed by (8), which means similar energy of those 
samples belong to the same class. In other hand, pq ciy y−  

can be computed by (9), which means dissimilar energy of 
those samples belongs to different class. 

Then, we can obtain the coefficient matrix B according to 
(11). In this way, the nonlinear transform by φ  is converted 

into the linear transform by terms cq ciy y−  and pq ciy y− , 

which means this nonlinear transformation can be linearized 
during the gradient ascent process. 

IV. EXPERIMENTAL RESULTS 

We will conduct two experiments: dimension reduction 
for projection and classification. We compare KFE with two 
existing methods. In order to facilitate the comparison, we 
duplicate the GDA in [6] and the MMI in [9]. The kernel 
width σ  is selected by the method in [9]. 

A. Test our method on synthesized data 

We present visualization experiment with synthesized 

data. In this example we learn a nonlinear projection from a 
high-dimensional feature space onto a discriminative 
direction for visualization purposes, specially to visualize 
class separability. The data is non-Gaussian densities. It is 
three-dimensional, and two classes. Class one has 200 
samples from a bimodal Gaussian distribution, with centers 
at (1,0,0) and (-1,0,0). Class two has 200 samples, also from 
a bimodal Gaussian distribution, with centers at (0,1,0) and 
(0,-1,0). 

For visualization of the classification ability, we perform 
our algorithm on this synthesized data, and add the third 
class which is a single Gaussian distribution, we sample 200 
samples. Then, we compare it with some existing methods, 
such as GDA、MMI and KFE. Fig. 1 shows the projection 
results. 

 
                        (a)                                    (b)                               (c) 
Fig. 1.  Visualization of results: (a) GDA; (b) MMI; (c) KFE 

From Fig. 1 we can observe that GDA and KFE can 
produce the better classification ability. Because of the 
linear properties, MMI cannot give a discriminative 
projection 

In order to explain why KFE can give a better 
classification result, we show the iteration status of MMI and 
KFE. Fig. 2 shows this result. 

 
                               (a)                                                           (b)  

Fig. 2.  Status of projection using gradient learning: (a) MMI; (b) KFE 

From Fig. 2, we observed that at the certain iteration 
steps, the samples using GDA are intend to gathering into 
the centers of these three classes, but MMI can give a more 
obviously tendency. This means that the gradient 
information in the transform processing may be useful for 
classification problem. 
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B. Test our method on benchmark data  

In this section, we evaluated KFE on real benchmark data 
sets of varying size and difficulty. The Phoneme set is 
available with maximize mutual information (MMI) 
algorithm in [9]. The rest of data sets are cited from the UCI 
data sets. The data sets and some of their characteristics are 
presented in Table I. 

TABLE I. CHARACTERISTICS OF THE DATA SETS AND 
PARAMETERS SETTINGS 

Data Training/Sampling Testing/Sampling cN / d / D  

Iris 150/105 150/45 3/4/2 
Statlog 4435/1800 2000/2000 6/36/2 
Letter 16000/2000 4000/1500 26/16/8 

Phoneme 1962/1962 1961/1961 20/20/9 

 
In Table II, Training/Sampling means that the number of 

the original features/the number of features sampling for 
training, D is the dimension reduction number for projection, 
d is the original dimension of the dataset. 

TABLE II. TEST PERFORMANCE OF PROJECTION ALGORITHMS 
(%/S) 

 Iris Statlog Phoneme Letters 

GDA 96.67/0.09 90.5/35.12 86.7/30.35 89.9/13.44 
MMI 96.67/0.08 89.5/3.80 85.3/2.74 88.6/1.80 
KFE 97.33/0.09 91.3/4.05 86.7/2.74 92.1/1.84 

 
We applied our feature extraction method to improve the 

classification of nearest neighbor algorithm [17] knnclassify 
in Matlab. Table II shows the classification performance of 
three methods: GDA、MMI and KFE. 

The above experiments show that it may be beneficial to 
combine KFE with classifiers, because KFE can extract 
important features and can be used for dimension reduction. 

V. CONCLUSIONS 

A novel algorithm, KFE, for feature extraction is 
presented. The algorithm works in an iterative fashion and 
the final coefficient matrix is obtained during successive 
iterations. Experimental shows that KFE has lower time 
complexity than GDA, and it is superior to MMI in 
classification performance.  

Another algorithm, an extension of KFE, is also evaluated 
for dimension reduction. This can be considered as a 
preprocessing step for classification. Nevertheless, the 
fascinating idea of using our approach is that we build a 
connection between feature extraction and gradient learning.  

In future work we intend to apply the proposed method to 
larger data sets, especially for bioinformatics. We also want 
to modify our algorithm to parallel implementations. In 
addition, how gradient of the objective function influence 
the performance of the classifiers is an interesting topic.  
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