
ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 19, NO. 7, 2013

Abstract—In this paper we research the possibility of

automated combinational logic circuit (CLC) design using

evolutionary computation. We propose and develop a genetic

programming method which is able to construct a CLC based

on the given truth tables, where the focus is to minimize the

number of logic gates while accuracy is not compromised. We

tested the proposed approach and compared the results both

with MGA and NGA automatic methods as well as with the

results obtained by human designers. Results show that our

algorithm is superior to other methods as it can find correct

circuits with fewer specified elements. The experiments

performed on larger examples show good performance and

scalability of the proposed evolutionary approach.

Index Terms—Combinational circuits, design optimization,

genetic programming.

I. INTRODUCTION

One common task in digital electronics consists of

designing a combinational logic circuit (CLC) that performs

a desired function, given a certain specified set of available

logic gates [1]. In order to fulfil the ever-growing

optimization requirements such a circuit should be

composed of as few elements as possible. Namely, the

increase of integration level and size of integral circuits

during functionality modelling of such circuits represent a

problem for circuit designers. During the years many rules

and techniques for finding solutions to the problem of

optimizing CLC design have emerged [2]. However, the task

is still demanding for a human designer, especially when a

complex circuit is in question. To support the designers in

performing this task different automatic methods that tackle

this problem have been developed, with evolutionary

computation being the most successful one [3]. While most

of the research, including the leading researcher in this field

Coello [4], already showed how correct CLCs can be

constructed using genetic algorithms (GA), our goal was to

use genetic programming (GP) method. In contrast to other

research done in this field, we expanded the objective of our

research to the optimization of the number of gates in the

final circuits, which has not been done before. Following

this path, we developed a new genetic programming method

that is aimed at designing 100% correct CLCs using the

specified set of available logic gates while minimizing the

Manuscript received January 14, 2013; accepted March 14, 2013.

number of logic gates used. In this paper, we present this

method and some results which show that our method is able

to find solutions, that are comparable with both, human

designers and other existing automatic approaches, in an

efficient manner.

II. RELATED WORKS

The design process for CLC has evolved from its first

notions to a standard element of undergraduate computing

curricula [5]. Standard graphical design aids such as

Karnaugh Maps [6] are widely used and tools suitable for

computer implementation have evolved from the Quine–

McCluskey method to freely available tools and commercial

products. Soon, the researchers started to develop

approaches and methods for automated design of CLC. It

has turned out that the use of evolutionary techniques is one

of the most viable alternatives for performing this task [7].

Literature review reveals several attempts to use

evolutionary techniques for designing electrical circuits [8],

some of them address optimization of digital circuits with

genetics based methods [9], but only a few researchers are

working on the design of circuits at the gate-level.

In some earlier researches genetic programming has been

used for the design of CLCs by Louis [10], who combined

GP with knowledge-based systems, and Koza [11], who

focused on generating functional circuits rather than

optimizing their size. Later Thompson et al. [4] focused on

the configuration of a FPGA using GA, whose work

influenced many other researchers working at the gate level,

including Coello [4], [7], [12], who achieved good results by

using GAs and multi objective design of CLC but without

focusing on the number of the gates.

More recent research in this field is from Brajer [13]

where she used a Cartesian GP (CGP) paradigm to construct

the CLC. Instead of the standard tree structure of genotype

usually used with the GP, CGP uses the array of strings for

the genotype, similar to the standard GA. Her method was

efficient in the construction of the CLC but again, there was

no focus to optimize the number of gates used and no testing

instances were provided for comparison with other methods.

Same CGP approach was used by Miller [14] but again no

testing instances were provided and his research was more

aimed at comparing CGP to regular GA and Probabilistic

Hillclimbers as a method to solve Boolean functions.

Optimization of Combinational Logic Circuits

with Genetic Programming

S. Karakatic
1
, V. Podgorelec

1
, M. Hericko

1

1
Institute of Informatics FERI, University of Maribor,

Smetanova ulica 17, SI-2000 Maribor, Slovenia

saso.karakatic@uni-mb.com

http://dx.doi.org/10.5755/j01.eee.19.7.5169

86

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 19, NO. 7, 2013

Our objective here is to automatically construct a CLC

that accurately performs the desired function (specified by a

given truth table) but with the strong focus on minimizing

the number of gates using the standard GP approach.

III. GENETIC PROGRAMMING

Genetic programming is a systematic method for getting

computers to automatically solve a problem starting from a

high-level statement of what needs to be done [15]. GP is a

domain-independent method that genetically breeds a

population of computer programs to solve a problem.

Specifically, GP iteratively transforms a population of

computer programs into a new generation of programs by

applying analogs of naturally occurring genetic operations.

This process is illustrated in Fig. 1.

Fig. 1. Main loop of genetic programming [15].

The genetic operations include crossover (recombination),

mutation, reproduction, gene duplication, and gene deletion.

GP is an extension of the genetic algorithm [6], in which the

structures in the population are not fixed-length character

strings that encode candidate solutions to a problem, but

programs that, when executed, are the candidate solutions to

the problem.

Programs are expressed (genotype) in GP as syntax trees

rather than as lines of code. For example, the simple

expression

 ((A OR B) AND C) XOR (A AND B) (1)

is represented as shown in Fig. 2. The tree includes nodes

and links. The nodes indicate the instructions to execute.

The links indicate the arguments for each instruction. In this

manner, the internal nodes in a tree are operators (or

functions), while the tree's leaves are operands (or

terminals).

Fig. 2. An example of a syntax tree representing an expression within GP.

Some researches by Fogel [16], [17] suggest that GP

outperforms GA in the sense of premature convergence,

which is one of the main reasons for using GP in the present

study. Fogel showed that GA may prematurely stagnate by

getting a result that is not even the local optimum, whereas

GP has a significantly higher chance to find the global

optimum, not get caught in the local optimum and thus get

better results than its counterpart evolutionary method GA.

In the case of automatic CLC design, a 100% correct circuit

represents a local optimum. Any further evolution that would

eventually lead to the reduction of used gates normally

compromises the circuit’s accuracy which prevents GA from

finding the global optimum. According to Fogel a properly

implemented GP should outperform GA in this matter and

that is why we decided to use GP approach.

IV. IMPLEMENTATION OF THE GENETIC PROGRAMMING

SYSTEM

Any CLC can be represented in the form of an expression

(a formula), consisting of a set of operators (logic gates, like

AND, OR, etc.) and operands (logic inputs to a circuit). The

result of the expression represents the logic output of the

CLC. This makes the construction of CLC a viable case to

be used with GP. An expression that defines a circuit

represents a program in a form of a syntax tree, which is the

basic representation of a genotype in GP.

There are two conditions which each generated starting

random solution must satisfy: 1) it should be unique to

enforce the diversity of the population, and 2) all operands

must be included in the starting solution, which eliminates

the chances of too small trees in the beginning.

The basis of GP is the process where generations of

solutions (syntax trees representing logic expressions)

evolve towards a global objective (Fig. 1). The evolutionary

process consists of evaluating the fitness of each single

solution within a generation and applying of genetic

operators: selection, crossover and mutation.

Standard operator used in our implementation were binary

tournament selection method, automatic advancement of the

elite (5% of the fittest solutions) in the new generation,

crossover of two trees as shown on Fig. 3 and the mutation.

Mutation operator selects a random node which undergoes

one of three mutation processes based on the type of the

node selected. If randomly selected node is a type of

operator NOT, this node is removed from the tree. If the

selected node is any other type of operator, it is either

replaced by a randomly chosen different operator or deleted

along with its children and a randomly selected operand

comes in its place. If selected node is an operand, it is either

replaced by a randomly chosen different operand or a new

randomly generated sub-tree comes in its place. The

mutation is depicted on Fig. 4.

Fig. 3. An example of crossover, where offspring tree is composed out of

two parts of two parental trees.

87

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 19, NO. 7, 2013

Fig. 4. An example of mutation, where a randomly chosen node of a tree is

mutated) into another gate or input.

Fitness function. New offspring trees are then evaluated –

their fitness is calculated. Firstly the gates are counted and

secondly Boolean formula is formed from the genotype tree.

Its results are compared to correct values from the truth

table. The fitness value is a weighted sum of the number of

incorrect results and gates

 FF = wr×errors + wg×gates, (2)

where errors is the number of rows in truth table, where the

solution makes a mistake, and gates is the number of used

gates (i.e. number of internal nodes in a syntax tree). The

sum is weighed in order to give preference to correct

solutions in regard to short expressions. In this manner, the

algorithm searches for a solution that gives a correct output

for each given combination of inputs and is also small (i.e.

using the lowest possible number of logic gates).

V. EXPERIMENTS

For the purposes of this paper, three examples were

chosen to illustrate our approach and the results produced

are presented. Two of them are rather simple, having four

inputs and one output. The resulting circuits, obtained with

our proposed system, have been compared to existing

solutions. The third one is a more complex one, having 6

inputs and one output; it has been used primarily for

performance and scalability analysis, and also to show that

the proposed system is capable to cope with more complex

examples. In all three examples the allowed set of operators

(gate types) was: AND, OR, XOR and NOT. Resulting

circuits found by our system were compared to the MGA,

the NGA, the results produced by the human designer (using

Karnaugh Maps) and Sasao. Our resulting solutions are

comparable in size to other solutions even when we convert

all the circuits to NAND or NOR only solutions. Our GP

algorithm can be adjusted to use only those two gate types,

but the comparison would not be fair, as other researchers

were not building circuits with only those two gates. To

allow for direct comparison we used the same set of gate

types as other researchers.

A. Example #1

Our first example has 4 inputs and one output. The

comparison of the results produced by our system (Fig. 5),

two other evolutionary based systems – the MGA [12] and

the NGA [18], a human designer using Karnaugh Maps, and

Sasao’s approach [3] are shown in Table I. Sasao has used

this circuit to illustrate his circuit simplification technique

based on the use of ANDs & XORs. His solution uses,

however, more gates than the circuit automatically produced

by the NGA, MGA or our system. It can be seen that our

system achieves the lowest number of used gates.

Fig. 5. The combinational logic circuit, evolved with the proposed system

for the example #1.

TABLE I. BEST CIRCUITS FOR THE EXAMPLE #1.

Design Size Resulting Circuit

Our system 7 Z=((BC)+(D⨁B))⨁(A+(D+C)')

MGA 8 Z=(((B⨁BC)⨁((A+C+D)⨁A))'

NGA 10 Z=(BDC'⨁((B+D))⨁A⨁(C'D'A)))'

Human 1 11 Z=((A'C)⨁(D'B'))+((C'D)(A⨁B')

Human 2 12 Z=C'⨁D'B'⨁CD'A'⨁C'D'B

B. Example #2

Our second example is again a standard benchmark and

has 4 inputs and one output. The comparison of the results

produced by our system (Fig. 6), the MGA, the NGA and

two human designers (the first, using Karnaugh Maps and

the second using the Quine-McCluskey Procedure) are

shown in Table II. It can be seen that all three genetic

approaches achieve the same (lowest) number of gates.

Fig. 6. The combinational logic circuit evolved with the proposed system

for the example #2.

TABLE II. BEST CIRCUITS FOR THE EXAMPLE #2.

design size resulting circuit

our system 7 Z=(C+(D⨁A))'+(B⨁(AD'))

MGA 7 Z=((A⨁B)⨁AD)+(C+(A⨁D))'

NGA 7 Z=((B⨁A)⨁AD)+(C+(D⨁A))'

human 1 9 Z=((A⨁B)⨁((AD)(B+C)))+((A+C)+D)'

human 2 10 Z=A'B+A(B'D'+C'D)

C. Example #3

The third example is a more complex one, with 6 inputs

and one output. We primarily generated this example for the

purpose of the performance and scalability analysis. Our

system was able to find a correct circuit that consisted of 46

logic gates within 300 generations, where the population size

was 1.000 trees.

Let us take a look at the evolution of the accuracy (Fig. 7)

and number of elements (Fig. 8) and compare them. As

expected, the accuracy of the best individual rises rather fast

to the point near the 150
th

 generation, where it slows down

but continues to improve, to the point where it reaches the

100% accuracy mark near 300
th

 generation.

88

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 19, NO. 7, 2013

Fig. 7. Accuracy of circuits through the evolution for the example #3.

Reaching the perfect accuracy sometimes means that the

number of elements must rise, as is seen in Fig. 8, where in

the 292
th

 generation the number of elements dramatically

rises when the perfect accuracy is achieved. This is because

fitness function prefers the accuracy over the number of

elements, as mentioned earlier. For a short period, the

number of elements in the best solution is even greater than

the average number of elements, again due to the complex

fitness function, which favors accuracy.

Fig. 8. Number of elements in the circuits through the evolution for the

example #3.

Process does not stop here, even after the accurate

solution is found, algorithm improves the size of the circuit

by shortening it from 129 elements, all to the 832
th

generation, where it reaches the optimum with 46 elements.

The test took about 5 minutes on an average desktop PC,

160 seconds in the best case and 10 minutes in the worst

case scenario – it depends on the starting randomly

generated generation. Because no benchmark exists, we

cannot conclude if the solution is the global optimum or just

a local one, but as far as our algorithm goes, this was the

best solution it found.

VI. CONCLUSIONS

In this paper we presented a new GP method for

automatic construction of CLCs. Our main goal was the

development of a method that provides perfectly accurate

circuits with the lowest possible number of specified logic

gates. The obtained results show that our method was able to

find such solutions – all the circuits were perfectly accurate

and composed of lower or at least the same number of gates

compared to the best known existing solutions. The use of

GP and the representation of CLCs in a form of syntax trees

within GP have enabled evolutionary search to escape local

optima by maintaining the needed diversity and thus

avoiding premature convergence.

At this point the genetic parameters and weights in fitness

function have been determined experimentally. In the future

we plan to perform exhaustive analysis of the presented

method in regard to different parameter settings.

Additionally, we will test our algorithm with regard to

scalability and performance on large circuits.

REFERENCES

[1] R. C. Jaeger, T. N. Blalock, Microelectronic Circuit Design, 3rd ed.

McGraw-Hill, 2000, pp. 1–32.

[2] T. Sasao, Logic Synthesis and Optimization. Kluwer Academic Press,

1993. [Online]. Available: http://dx.doi.org/10.1007/978-1-4615-

3154-8

[3] A. Thompson, I. Harvey, P. Husbands, “Unconstrained evolution and

hard consequences”, Lecture Notes in Computer Science, vol. 1062,

pp. 136–165, 1996. [Online]. Available: http://dx.doi.org/10.1007/3-

540-61093-6_7

[4] C. A. C. Coello, A. D. Christiansen, A. H. Aguirre, “Automated

Design of Combinational Logic Circuits Using Genetic Algorithms”,

in Proc. of the International Conference on Artificial Neural Nets

and Genetic Algorithms, 1997, pp. 335–338.

[5] C. H. Roth, Fundamentals of logic design, 4th ed., West Publishing

Company, 1992.

[6] J. H. Holland, Adaptation in natural and artificial systems: an

introductory analysis with applications to biology, control and

artificial intelligence. MIT Press, 1992.

[7] C. A. C. Coello, A. D. Christiansen, A. H. Aguirre, “Towards

automated evolutionary design of combinational circuits”, Computers

& Electrical Engineering, vol. 27, no. 1, pp. 1–28, 2000. [Online].

Available: http://dx.doi.org/10.1016/S0045-7906(00)00004-5

[8] H. Kitano, J. A. Hendler, Massively Parallel Artificial Intelligence.

MIT Press, 1994.

[9] M. Nirmala Devi, N. Mohankumar, S. Arumugam, “Modeling and

analysis of neuro–genetic hybrid system on FPGA,” Elektronika ir

Elektrotechnika (Electronics and Electrical Engineering), no. 8, pp.

69–74, 2009.

[10] S. J. Louis, “Genetic algorithms as a computational tool for design”,

Indiana University, 1993.

[11] J. R. Koza, Genetic Programming. MIT Press, 1992.

[12] C. A. C. Coello, L. Nacional, I. Avanzada, A. H. Aguirre, B. P.

Buckles, “Evolutionary Multiobjective Design of Combinational

Logic Circuits,” in Proc. of the Second NASA/DoD Workshop on

Evolvable Hardware, 2000, pp. 161–170.

[13] I. Bajer, D. Jakobović, “Automated Design of Combinatorial Logic

Circuits”, in Proc. of the 35th International Convention MIPRO,

2012.

[14] J. F. Miller, “An empirical study of the efficiency of learning boolean

functions using- a Cartesian Genetic Programming approach”, in

Proc. of the Genetic and Evolutionary Computation Conference,

1999, vol. 2, pp. 1135–1142.

[15] J. R. Koza, R. Poli, “Genetic Programming”, Search Methodologies,

2005, pp. 127–164.

[16] D. B Fogel, “Asymptotic convergence properties of genetic

algorithms and evolutionary programming: analysis and

experiments”, Cybernetics and Systems: An International Journal,

vol. 25, no. 3, pp. 389-407, 1994. [Online]. Available:

http://dx.doi.org/10.1080/01969729408902335

[17] D. B Fogel, “A Comparison of Evolutionary Programming and

Genetic Algorithms on Selected Constrained Optimization

Problems”, Simulations, vol. 64, no. 6, 1995.

[18] C. A. C. Coello, A. D. Christiansen, A. H. Aguirre, “Use of

Evolutionary Techniques to Automate the Design of Combinational

Circuits”, pp. 1–25, 1999.

89

