
ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392–1215, VOL. 20, NO. 6, 2014

1 Abstract—Earlier evolvable hardware (EHW) platforms
suffer from major drawbacks such as high area and delay
overheads, high configuration memory overhead, low
configuration speed and lack of flexibility. In this paper, we
propose an intrinsic evolvable system on dynamic partial
reconfigurable (DPR) platform using bitstream relocation
technique to address these limitations. This relieves the
overhead of configuration memory required to save the partial
bistream (PB). In addition, the data transfer time between the
configuration memory and the field programmable gate array
(FPGA) is also reduced, which leads to a relatively high
configuration speed. We implemented the proposed evolvable
system using an FPGA board with an application of an adaptive
finite impulse response (FIR) filter. The experimental result
shows that the proposed system can achieve 116 × configuration
speedup and 85 % configuration memory saving.

Index Terms—Evolvable hardware, dynamic partial
reconfiguration, bitstream relocation, bitstream compression.

I. INTRODUCTION

In the past decades, evolvable hardware (EHW) has
received increasing attention from all over the world [1]–[6].
EHW refers to hardware that can change its architecture and
behaviour dynamically and autonomously by interacting with
its environment [7]. EHW can be classified into two major
divisions, extrinsic EHW and intrinsic EHW. In the intrinsic
EHW approach, one of the most interesting features is that the
calculation of fitness value of each candidate circuit, which is
the most time consuming part in the whole evolutionary
process, can be evaluated more quickly than in software
simulation based extrinsic EHW [8]. Another visible
advantage is that it can exploit physical properties of the
electronic platform or environment and thus to provide some
innovative features such as fault tolerance.

An efficient and flexible platform plays a vital important
role in the research domain of intrinsic EHW. Owing to no
commercial evolvable platform available, much research
work has been undertaken on evolvable platform since the
birth of EHW. The earliest evolvable platform includes
generic array logic (GAL) [9] and programmable logic array
(PLA) [10], due to the limited logic resource of these two
simple programmable logic devices (PLD), only relatively
simple circuit could be evolved. The Xilinx XC6200 series

Manuscript received July 31, 2013; accepted March 10, 2014.
This research was funded by a National 863 High-Tech Research and

Development Plan of China (No. 2009AA8050701).

field programmable gate array (FPGA), with the feature of
known bitstream format and safe configuration, has made
great promotion in intrinsic EHW. A number of evolutionary
experiments were conducted on XC6200 [11]. Unfortunately,
XC6200 was withdrawn and replaced by subsequent Virtex
family. To prevent from reverse engineering, the bitstream
format of Virtex FPGA is unknown. Although Xilinx
provided a Java based bitstream manipulation tools named
JBits, new devices after Virtex II were not supported by JBits.
Moreover, JBits running on Java virtual machine which have
the disadvantage of greater complexity and higher
computation cost are not suitable for embedded systems. A
well-known alternative is the use of virtual reconfigurable
circuits (VRC), a reconfigurable layer built on top of the
reconfigurable fabric that reduces the complexity of the
reconfiguration process, creating a kind of application
specific programmable elements [12]. Main problems of
VRCs are area and delay overheads, as well as power
consumption [13]. Other custom evolvable platform includes
evolvable motherboard [14], RISA [15] and POEtic [16] et al.
Although great progress has been made in the field of custom
evolvable platform, the existing platforms suffer from high
cost and less generality.

Fortunately, the promising feature of partial
reconfiguration at runtime, which provided by the Virtex
FPGA has open a brand new paradigm for intrinsic EHW.
Previous researchers have presented evolvable system using
dynamic partial reconfiguration (DPR). Upegui introduced an
evolvable system by dynamically changing the look-up table
(LUT) contents while keeping a safe predefined fixed routing
[17]. This approach is mainly constrained by its very specific
purpose and the coarse granularity of the modules. A
stand-alone self-reconfigurable adaptive FIR filter system
using the DPR method was presented in [18]. In this case, an
external processor was employed, and the DPR was
implemented by system ACE (Advanced Configuration
Environment) using JTAG interface which suffered from low
speed. A system architecture combining 2D data processing
arrays and an enhanced DPR engine is proposed by Otero
[13]. Although this alternative achieves relatively higher
reconfiguration speed, the two dimensional mesh type systolic
arrays focused on data processing applications, so the
generality was constrained. However, high reconfiguration
speed was achieved by over-clocking, which constrained its
use in other applications. Further, bitstream compression is

Runtime Bitstream Relocation based Intrinsic
Evolvable System

Kaifeng Zhang1, Huanzhang Lu1, Shanzhu Xiao1, Weidong Hu1

1ATR key lab, National University of Defense Technology,
Changsha, China

zkf0100007@163.com

http://dx.doi.org/10.5755/j01.eee.20.6.4878

93

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392–1215, VOL. 20, NO. 6, 2014

not considered in Otero’s work.
In this paper, a novel intrinsic evolvable system based on

DPR platform is proposed that is using bitstream relocation
technique. The purpose of this evolvable system is to
construct a general-purpose and flexible platform for EHW
research. More specifically, the novel features of our
proposed intrinsic evolvable system are given below.

1. Runtime relocatability – eliminate the need of pre-design
all possible configuration bitstream for each partial
reconfigurable partition (PRP).
2. High configuration speed – by introducing a bitsream
compression technology, the data transfer time between
configuration memory and FPGA was reduced which lead
to a high configuration speed.
3. Low memory overhead – the bitstream relocation and
compression technology both contribute to low memory
overhead.
The remainder of this paper is organized as follows.

Section II gives a brief review of DPR and bitstream
relocation. Section III presents an intrinsic evolvable system
based on dynamic partial reconfigurable platform using
bitstream relocation technique, and the design methodology
and hardware implementation details are described in detail.
In Section IV, experiments were conducted to verify the
validity of our proposed evolvable system. Finally,
conclusions are drawn in Section V.

II. DYNAMIC PARTIAL RECONFIGURATION AND BITSTREAM
RELOCATION

This section discusses the architecture of Xilinx Virtex-5
FPGAs and the reconfiguration mechanism. Although we
addressed with Virtex-5, our system is rather general and can
be applied for other FPGA platforms.

A. Dynamic Partial Reconfiguration
DPR means parts of FPGA can be changed at runtime while

the rest parts are still functioning. Several approaches have
been provided by Xilinx for DPR, such as difference-based,
module-based, early access partial reconfiguration (EAPR),
and the newest partition-based technique. The
difference-based flow is only applicable for small design
change. The module-based and EAPR flow are not supported
by new design tools. The partition-based flow has several
promising features compared to its predecessors. Bus macros
instantiation are no longer required in partition-based flow,
and the counterpart partition pins are automatically inserted
by the design tools.

B. Partial Bitstream and Relocation
A partial bitstream (PB) is used to configure a PRP, which

contains dummy words, synchronization word, commands,
data, and cyclic redundancy check (CRC) values. The PB is
composed of configuration frames, and a frame has a unique
address. In principle, a PB is only usable for an associated
PRP which has assigned during design phase. In the case of a
design that contains N PRPs and M modules, N*M PBs
should be designed, which brings high configuration storage
overhead and leads to a time consuming job. In order to solve
this problem, a technique named bitstream relocation was
developed [19], [20]. Bitstream relocation means that a PB

assigned to PRP_A could be used to configure PRP_B at
runtime. By introducing bitstream relocation into a design
scenario mentioned above, only M PBs are needed. The
studies of bitstream relocation can be divided into bitstream
manipulation and relocatable partition design [21], [22]. The
former includes REPLICA, REPLICA2Pro and BiRF [19] et
al. To design a relocatable partition is the key point of
relocating bitstream at runtime. On the basis of a relocatable
partition, the bitstream relocation could be simply conducted
by modifying the frame address and CRC values. The
modification could be performed by the means of software or
hardware. The detailed description of bitstream relocation is
elucidated in the following section.

III. PROPOSED INTRINSIC EVOLVABLE SYSTEM

In this section, we discuss the proposed intrinsic evolvable
system (IES). This section is further divided into four
subsections. First, we give a brief introduction to the overview
of intrinsic evolvable system. In view of improving the
reconfiguration speed and reducing configuration storage
overhead, a custom ICAP supporting bitstream
decompression and relocation was designed. Finally, the
whole design flow was given, and attention was focused on
creating relocatable partitions.

A. Overview of Intrinsic Evolvable System
The intrinsic evolvable system we proposed is composed of

the following modules: a PowerPC based embedded system, a
custom internal configuration access port (ICAP) with the
feature of bitstream decompression, and relocatable
partitions.

Fig. 1. Block diagram of intrinsic evolvable system.

Figure 1 shows the block diagram of the proposed
evolvable system. The Power PC 440 controls the whole
system work flow, and the evolutionary algorithm (EA) is also
running on it. A 256 MByte DDR SDRAM is attached to the
processor local bus (PLB) via the multi-port memory
controller (MPMC) IP core. The configuration information
includes full/partial bitstream are stored in a nonvolatile
compact flash (CF) card. The System ACE controller is in
charge of data transfer between the FPGA and the CF card.
The DPR is performed using the custom ICAP. The
compressed PB read from the CF card is decompressed by the
decompression logic. The decompressed bitstream is
manipulated by a relocation filter to modify the target frame
address. Finally, the relocated bitstream is loaded into the

94

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392–1215, VOL. 20, NO. 6, 2014

FPGA to configure the PRPs.

B. Custom ICAP
By analysing the reconfiguration process, most time is

spent on data transfer between the CF card and the
configuration port such as joint test action group (JTAG),
SelectMAP or ICAP. Due to the nature of the CF card as
non-volatile memory which suffers from low speed, using
bitstream compression to reduce data transfer time is a
feasible way. A custom ICAP was developed to fulfil this
purpose. As depicted in Fig. 2, the custom ICAP consists of
two FIFOs, bitstream decompressor, bitstream relocation
filter (BiRF) and ICAP_WRAPPER.

M
U
X

FSM

BiRFICAP_
WRAPPER

FIFO

x"00"

RD

TARGET
ADDR

STATUS

RD

DATA

STATUS

DATA

STATUS

WE

DECOMPRESSOR

Fig. 2. Block diagram of custom ICAP.

In view of the fact that the PB contains large amount of
consecutive zeroes, a relatively high compression ratio could
be obtained. Among a number of data compression
algorithms, run-length encoding is a simple technique to
compress a sequence of identical tokens belonging to a data
stream [23]. In this paper, we proposed a simplified
run-length bitstream compression (SRLBC) method. In our
approach, we treat the input data stream as a byte-width
manner, and only zeroes are compressed, the non-zero values
are not compressed. A pseudocode of the proposed SRLBC is
provided in Fig. 3.

Fig. 3. Pseudocode of the proposed SRLBC.

The decompression is relatively simple, if the input byte is
non-zero, output it directly; if the input byte is zero, the
following byte L refers to the run-length (number of
consecutive zeroes), just output L zeroes. Repeating the

process until it reaches the end of the bitstream. Owing to the
simplicity of our proposed SRLBC, it is quite suitable for
FPGA implementation. In order to validate the SRLBC,
several commonly used function modules were implemented
as reconfigurable components. The PB generated by Xilinx
tools was compressed by SRLBC which was implemented
using Matlab. The decompressor was implemented on FPGA.
As shown in Fig. 3, the decompressor is composed of DFFs,
multiplexer and a simple finite state machine (FSM). The
waveform of bitstream decompression was shown in Fig. 4.

Fig. 4. Waveform of bitstream decompression.

As shown in Fig. 4, DIN indicates the input of compressed
bitstream, DOUT indicates the decompressed bitstream and
FLAG indicates the decompression status which can be used
to control the RD of the input FIFO.

Table I shows the performance of SRLBC. Compression
ratios vary with the target device family and the target design
contents. For a same partition, a 46-tap low pass FIR filter that
occupied 90 % logic resource yields a 59.24 % compression
ratio, while the all pass filter yields a 2.29 % compression
ratio. The reason lies in that the all pass filter only occupied
less than 5 % logic resource. Under most conditions, the logic
utilization is less than 90 %, a compression ratio under 60 %
could be obtained.

TABLE I. PERFORMANCE OF SRLBC.

Configuration
Original
bitstream
size(bytes)

Compressed
bitstream
size(bytes)

Compression
ratio

Adder 45445 5548 12.2 %
Multiplier 45445 4490 9.88 %

FIR-46 tap (all pass) 285906 6539 2.29 %
FIR-46 tap (low pass) 285906 169357 59.24 %

A BiRF [19] proposed by Corbetta is employed to carry out
bitstream relocation at runtime. The BiRF consists of a logic
unit, a CRC calculator and a FSM. The FSM is used to
identify the frame address register (FAR) and CRC
commands in the bitstream, in order to modify the
corresponding parameters.

The CRC is used to check the data integrity of the
bitstream. Although no device damage has ever been reported
for loading a faulty PB, it is not a certainty that damage could
never occur, nor that the system that the FPGA device is
controlling would not be damaged [24]. If the correctness of
bitstream can be guaranteed, the CRC could be bypassed.
Under such circumstance, a default CRC value 0xDEFC is
used.

C. Relocatable Partition
Relocatable partition means that although the two

partitions implemented different logic functions, they have
same partition pins and relative routings between proxy logic
and static region. In other word, the two partitions have
uniform configuration and can be relocated at runtime. In

95

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392–1215, VOL. 20, NO. 6, 2014

general, the two relocatable partitions should comply with
several disciplines [21] shown below:
 Amount of reconfigurable resources
 Relative layout of reconfigurable resource
 Relative placement of proxy logic
 Relative routing path between proxy logic and static
region
 Rejection of the wire from PRR, which does not through
proxy logic
To achieve the aforementioned five disciplines, some

constraints and design consideration should be followed. The
details of how to create relocatable partitions were discussed
in the following subsection.

D. Creating the Proposed IES
Figure 5 depicts the software work flow of creating a partial

reconfiguration design. This work flow has integrated a
partition-based flow adapted from the standard Xilinx flow.
The steps containing in the solid box are standard Xilinx flow,
and the Step 4 enclosed in the dashed box is an additional
flow. The additional flow is used to create uniform relocatable
partitions, and special attention is focused on it. The steps
required to build the proposed intrinsic evolvable system are
described below.

Design Entry & Synthesis

Static
Module RM_1 RM_N

RPStatic UCF

...

PR2UCF

DRC

NCDNCDNCD

*.ngc

Implementation

Bitgen

*.bit

3 2 1

Constraints

Step 1

Step 2

Step 3

Step 4

Step 5

RP...

Fig. 5. Partial reconfiguration design flow.

Step 1 Design entry and synthesis. A PowerPC system
corresponded to static module was created using Xilinx EDK.
In addition to the basic elements of the PowerPC based
embedded system, three peripheral IPs are added, including
MPMC, System ACE and custom ICAP. After the hardware
platform is created, a software project was created using
Xilinx SDK tool. The PRPs were described in hardware
description language (HDL) and synthesized using XST tool.

Step 2 Create constraints. A reconfigurable design was
created using PlanAhead. The reconfigurable design is
composed of static module and reconfigurable modules. The
shape and size of reconfigurable partition are set by GUI tool
or user constraints. Several reconfigurable partitions named
PRP_1 to PRP_N were created. Those PRPs are same in
shape and size.

Step 3 Run the PAR flow. After the reconfigurable design

was created, the placement and routing (PAR) flow was
invoked to implement the design. In the standard flow, the
routed design was ready for bitstream generation. However,
in our design, for the purpose of creating relocatable
partitions, an additional step was employed.

Step 4 Create relocatable partitions. This step is
responsible for creating relocatable partitions. As shown in
Fig. 5, after the first run of the PAR flow completed, a NCD*
file was generated. Although the PRPs created in Step 2 both
have same shape and size, the proxy logics and routings may
be different. In order to make these PRPs relocatable, the
proxy logics and routing of them must be uniformed. A PRP
was selected as baseline design, and other PRPs must be
compatible with it. The detailed steps are shown below:

1. Use “pr2ucf -bel -o partition_pins_bel.ucf
config_1.ncd” to extract the placement information of the
PRPs. Add the placement constraints to the UCF file and
re-run the PAR flow. After the PAR flow, the NCD** file
was generated.
2. Open the generated NCD** file using FPGA Editor, and
extract the routing information using directed routing
constraints (DRC) command. A PRP was selected as the
baseline design. To uniform the routings, constraints of the
baseline PRP can be applied to other PRPs by modifying
the offset of X coordinate. Add the routing constraints to
the UCF file and re-run the PAR flow. After the PAR flow,
the NCD*** file was generated.
Finally, no routings cross the PRR without the proxy logic

should be guaranteed. The routings disobey the rules should
be rerouted manually.

Step 5 Generate bitstream.
The full bitstream and partial bitstream is generated using

Bitgen tool. In the case of default CRC was used, the –g CRC:
Disable option is required. For the purpose of booting from
CF card, a system.ace containing the C program was needed.
The partial bitstream is also stored on the CF card. DPR was
performed by loading the partial bitstream from the CF card to
the ICAP at runtime.

IV. EXPERIMENTS AND RESULTS

An adaptive finite impulse response (FIR) filter was
employed to demonstrate the effectiveness of our proposed
evolvable system. In the EHW system, the adaptive feature
includes parameter adaptation and structural adaptation. In
the case of adaptive FIR filter, parameter adaptation refers to
coefficient modification, and structural adaptation consists in
topology modifications, for instance, the order or type of
filters. The coefficient could be reloaded by modifying the
coefficient memory through the write operation of the PLB
bus. The structural adaptation is implemented by modifying
the filter order dynamically. The architecture of adaptive FIR
filter was shown in Fig. 6.

The basic module is an 8-tap FIR filter, which is composed
of F00, F01, F02 and F03. The h[15:0] are filter coefficients,
and FO[3:0] control the filter order. For example, if FO[3:0] =
0001, it means that an 8-tap FIR filter is needed. In this case,
the M03 is the last level, so the MUX selects the DFF output.
Under other conditions, the M03 is not the last level, so the
MUX selects the adder output.

96

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392–1215, VOL. 20, NO. 6, 2014

Fig. 6. Architecture of adaptive FIR filter.

The compact genetic algorithm (CGA) is employed to
control the adaptive FIR filter. Unlike the simple genetic
algorithm (SGA) [25], [26], the CGA represents populations
of candidate solutions as probability vectors (PV) rather than
as sets of bit strings [27]. By doing so, significant memory
saving can be realized, which make it very suitable for
embedded systems. The parameters and structure including
filter order and filter coefficients are encoded as chromosome.
The chromosome structure is shown in Fig. 7.

Fig. 7. Chromosome structure of CGA.

The chromosome is composed of filter order and filter
coefficients, the four LSBs indicate the filter order, and the
filter coefficients are represented using 16 bits two’s
complement. Owing to the symmetric feature of FIR filter, for
a N-tap filter (N is even), only N/2 coefficients were needed.
So, the total length of the chromosome is 16 × 16 + 4 = 260
bits.

The parameters of CGA are as follows: population size is
20, mutation rate is 0.05. The genetic operators include
reproduction and mutation, no crossover was used. In order to
protect the optimal individual of each generation, an elitism
based reproduction strategy was employed to ensure that the
currently best candidate remains in the next generation.

Figure 8 shows the work flow of adaptive FIR filter system.
After power on, the full bitstream was loaded to the FPGA
from the CF card, and an initial population was randomly
generated. Due to the decoded chromosome, the filters were
configured. Then the input data was processed to get the
fitness value. The genetic operation including mutation and
reproduction was performed to generate a new population.
The above cycle of filter configuration, data processing,
fitness evaluation and genetic operation is repeated in every
generation until the solution is found. If the expected solution
was found, the CGA exits the optimization cycle and outputs
the best individual.

The experimental system was based on a Xilinx ML507
board containing a XC5VFX70T-1-FF1136. The Xilinx ISE
Design Suite 13.2 System Edition with an additional PR
License was used to implement the whole evolvable system.
The implementation results of adaptive FIR filter system were
shown in Fig. 9.

Fig. 8. Workflow of adaptive FIR filter system.

Fig. 9. Implementation results of adaptive FIR filter system.

As shown in Fig. 12, a 16-tap filter was implemented, only
F0 and F1 were involved, F2 and F3 were leaving unused.

The electrocardiogram (ECG) data from MIT [28] was
used to train our adaptive FIR filter. The sampling rate is
200 Hz. The fitness function is defined as follows:

1

1 ,
_

N
i i

i

fitness
filter output ref

(1)

where filter_output is the filtered result, ref is the reference
signal and N is the sample length of the input data. The
reference signal may be uncorrupted signal or pre-computed
output according to the filter specification. For the simplicity,
we chose uncorrupted signal as the reference signal here.

The convergence criteria are defined as follows

0.05 1 0.05.i iPV or PV (2)

When the PV converged to 0 or 1, an optimal solution was
found. The filtering result of the evolved FIR filter was shown
in Fig. 10.

97

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392–1215, VOL. 20, NO. 6, 2014

As shown in Fig. 10, the upper figure shows the ECG signal
corrupted by a 50 Hz noise, and the lower figure shows the

filtered result. The filtering result shows that the noise was
removed effectively.

Fig. 10. Filtering result of evolved FIR filter.

TABLE II. PERFORMANCE OF SRLBC.

Method Original bitstream
size (bytes)

Compressed
bitstream size

(bytes)

Configuration
time (ms)

proposed 84244 44011 0.71
[18] 360800 - 350

The bitstream size is not provided in [18], in order to make
a fair comparison, the size is indispensable. Fortunately, as
referred in [18], a FIR macro occupied four clock regions, so
the PB size could be estimated using PlanAhead. As can be
seen from Table II, our method achieved a speedup of
approximately 116 × over the method proposed in [18]. In the
case of FIR macro [18], three PBs are needed for three
partitions. By using the bitstream relocation technique,
although our design contains four partitions, only one PB is
needed. Therefore, great configuration memory saving is
achieved. Further, configuration memory overhead can be
reduced by bitstream compression. For a FIR system
containing 4 partitions, the PB size of each partition is
8.4 KB, the total configuration memory requirement is
8.4 × 4 = 33.6 KB. While in our system, the configuration
memory requirement is only 8.4 × 0.6 = 5.04 KB, where 0.6 is
the compression ratio. In compare to conventional method,
85 % configuration memory saving can be achieved.

V. CONCLUSIONS

In this paper, an intrinsic evolvable system on dynamic
partial reconfigurable platform using bitstream relocation
technique was proposed. The efficiency of the proposed
method is illustrated by the low configuration memory
overhead and high reconfiguration speed. The effectiveness
of the proposed method is evident from the experimental
results obtained for the adaptive FIR filter application.
Moreover, the bitstream relocation feature eliminates the need
of creating specific PB for each PRP in conventional
methods, which can alleviate the time-consuming job.
Although the tool control language (TCL) scripts provided by

Xilinx can automate the design flow to some extent, human
interventions are still required to create the PRPs in current
flow. Future works may be focus on developing custom
software to automate this flow.

REFERENCES

[1] P. C. Haddow, A. M. Tyrrell, “Challenges of evolvable hardware: past,
present and the path to a promising future”, Genet Program Evolvable
Mach., vol. 12, pp. 183–215, 2011. [Online]. Available:
http://dx.doi.org/10.1007/s10710-011-9141-6

[2] R. F. Demara, K. Zhang, C. A. Sharma, “Autonomic fault-handling
and refurbishment using throughput-driven assessment”, Applied Soft
Computing, vol. 11, pp. 1588–1599, 2011. [Online]. Available:
http://dx.doi.org/10.1016/j.asoc.2010.01.020

[3] P. Kaufmann et al., “Classification of electromyographic
signals-comparing evolvable hardware to conventional classifiers”,
IEEE Trans. Evolutionary Computation, vol. 17, pp. 46–63, 2013.
[Online]. Available: http://dx.doi.org/10.1109/TEVC.2012.2185845

[4] G. He et al., “Evolvable hardware design based on a novel simulated
annealing in an embedded system”, Concurrency Computat. Pract.
Exper., vol. 24, pp. 352–368, 2012. [Online]. Available:
http://dx.doi.org/10.1002/cpe.1604

[5] S. Kim et al., “A hierarchical self-repairing architecture for fast fault
recovery of digital systems inspired from paralogous gene regulatory
circuits”, IEEE Trans. VLSI. Syst., vol. 20, pp. 2315–2328, 2012.

[6] J. Q. Xu, Y. Dou, Q. Lv, “A bio-inspired fault-tolerant hardware
system supporting hierarchical self-healing”, Elektronika ir
Elektrotechnika, vol. 18, pp. 103–106, 2012.

[7] X. Yao, T. Higuchi, “Promises and challenges of evolvable hardware”,
IEEE Trans. Syst. Man. Cybern., vol. 29, pp. 87–97, 1999. [Online].
Available: http://dx.doi.org/10.1109/5326.740672

[8] J. Wang, Q. S. Chen, C. H. Lee, “Design and implementation of a
virtual reconfigurable architecture for different applications of
intrinsic evolvable hardware”, IET Comput. Digit. Tech., vol. 2,
pp. 386–400, 2008. [Online]. Available: http://dx.doi.org/10.1049/
iet-cdt:20070124

[9] T. Higuchi et al., “Evolving hardware with genetic learning: A first
Step toward building a Darwin machine,” in Proc. 2rd Int. Conf.
Simulation of Adaptive Behavior, New York, 1992, pp. 417–424.

[10] B. I. Hounsell, T. Arslan, R. Thomson, “Evolutionary design and
adaptation of high performance digital filters within an embedded
reconfigurable fault tolerant hardware platform”, Soft Computing,
vol. 8, pp. 307–317, 2004. [Online]. Available: http://dx.doi.org/
10.1007/s00500-003-0287-x

[11] I. Harvey, A. Thompson, “Through the Labyrinth evolution finds a
way: a silicon ridge”, in Int. Conf. on Evolvable Systems, Tsukuba,
1996, pp. 406–422.

98

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392–1215, VOL. 20, NO. 6, 2014

[12] L. Sekanina, “Virtual reconfigurable circuits for real-world
applications of evolvable hardware”, in Int. Conf. on Evolvable
Systems, Trondheim, 2003, pp. 186–197.

[13] A. Otero et al., “A fast reconfigurable 2D HW core architecture on
FPGAs for evolvable self-adaptive systems”, NASA/ESA Conf. on
Adaptive Hardware and Systems, California, 2011, pp. 337–343.

[14] P. Layzell, “Reducing hardware evolution’s dependency on FPGAs”,
Int. Conf. on Microelectronics for Neural, Fuzzy and Bio-Inspired
Systems, Granada, 1999, pp. 171–178. [Online]. Available:
http://dx.doi.org/10.1109/MN.1999.758861

[15] A. J. Greensted, A. M. Tyrrell, “RISA: a hardware platform for
evolutionary design”, IEEE Workshop on Evolvable and Adaptive
Hardware, Honolulu, 2007, pp. 1–7.

[16] W. Barker et al., “Fault tolerance using dynamic reconfiguration on the
POEtic tissue”, IEEE Trans. Evolutionary Computation, vol. 11,
pp. 666–684, 2007. [Online]. Available: http://dx.doi.org/10.1109/
TEVC.2007.896690

[17] A. Upegui, E. Sanchez, “Evolving hardware by dynamically
reconfiguring Xilinx FPGAs”, Int. Conf. on Evolvable Systems, Sitges,
2005, pp. 56–65.

[18] C. S. Choi, H. Lee, “A self-reconfigurable adaptive FIR filter system on
partial reconfiguration platform”, IEICE Trans. Inf. & Syst.,
vol. E90-D, pp. 1932–1938, 2007.

[19] S. Corbetta et al., “Internal and external bitstream relocation for partial
dynamic reconfiguration”, IEEE Trans. VLSI. Syst. vol. 17,
pp. 1650–1654, 2009.

[20] M. A. Ponrani, G. Manoj, R. Rajesvari, “Module based partial
reconfiguration on bitstream relocation filter”, Int. Journal of
Computer Applications. vol. 66, pp. 23–28, 2013.

[21] Y. Ichinomiya et al., “A bitstream relocation technique to improve
flexibility of partial reconfiguration”, Int. Conf. on Algorithms and
Architectures for Parallel Processing, Fukuoka, 2012, pp. 139–152.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-33078-0_11

[22] M. Koester et al., “Design optimizations for tiled partially
reconfigurable systems”, IEEE Trans. VLSI. Syst. vol. 19,
pp. 1048–1061, 2011.

[23] S. Hauck, W. D. Wilson, “Runlength compression techniques for
FPGA configurations”, IEEE Symposium on FPGAs for Custom
Computing Machines, California, 1999, pp. 286–287.

[24] PRC/EPRC: Data integrity and security controller for partial
reconfiguration, xapp887.pdf Xilinx., 2012. [Online]. Available:
http://www.xilinx.com/support/documentation/application_notes/
xapp887_PRC_EPRC.pdf

[25] E. Kose, et al., “Sliding mode control based on genetic algorithm for
WSCC systems include of SVC”, Elektronika ir Elektrotechnika,
vol. 19, pp. 19–24, 2013.

[26] A. Sirbu, et al., “Improved genetic algorithm for the bandwidth
maximization in TDMA-based mobile Ad Hoc networks”, Elektronika
ir Elektrotechnika, vol. 19, pp. 104–109, 2013.

[27] J. C. Gallagher, S. Vigraham, G. Kramer, “A family of compact genetic
algorithms for intrinsic evolvable hardware”, IEEE Trans.
Evolutionary Computation, vol. 8, pp. 111–126, 2004. [Online].
Available: http://dx.doi.org/10.1109/TEVC.2003.820662

[28] A. L. Goldberger et al., “Components of a new research resource for
complex physiologic signals”, Circulation 101(23):e215-e220
[Online]. Available: http://circ.ahajournals.org/cgi/cont-ent/full/
101/23/e215]

99

