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Abstract—The main aim of the paper is to analyse
effectiveness of the approximation method from the nonlinear
discretised into discrete piece-wise affine model. Accuracy and
numerical complexity of the piece-wise affine control system
grow with the number of polyhedral partitions, that describe
the system. The model with state dependent nonlinearity can be
effectively approximated by proposed secant piece-wise linear
approximation. The effectiveness of the proposed method is
evaluated on the car on the nonlinear hill model.

Index Terms—Predictive control; optimisation, piecewise
linear approximation, discrete-time systems.

I. INTRODUCTION

In the last decade growing attention was paid to
modelling and methods for piece-wise affine (PWA)
systems [1]-[5]. Powerful tools for control of PWA systems
are implemented, i.e. MPT toolbox for Matlab [6]. From the
practical point of view most of the PWA models are only
approximation of the real nonlinear systems [5], [7]-[9].
Complexity of the PWA model is directly connected with
the number of polyhedral partitions, describing the system.
In general the more polyhedral partitions have the model;
the more accurate is PWA approximation of the nonlinear
system. On the other hand, computation time and numerical
complexity of the control problem rapidly grows with the
number of partitions [1].

Usually controller computed for the approximated model
(e.g. PWA) operates on the nonlinear plant. It may be
expected that the more accurate is the PWA approximation;
the better is the closed loop performance of the system with
nonlinear plant and controller tuned for PWA model.
Moreover it may be supposed that there exists some minimal
PWA approximation error that guarantees some specific
performance of the control system with nonlinear plant.

The main aim of the paper is to propose and evaluate
method for piecewise affine approximation of nonlinear
system. Among many existing papers regarding control of
PWA system and nonlinear system, there is a gap involving
accuracy and complexity analysis of PWA approximated
models in control of nonlinear system. Significant impact of
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the paper is verification how the number of partitions in the
approximated PWA model results in control performance
for the nonlinear system. The investigation is made on the
basis of the assumed model — car on the nonlinear hill,
where the control objective is to drive the car from initial
conditions to the origin, in minimum time, subject to limited
force.

Il. SYSTEM DESCRIPTION AND CONTROL PROBLEM
FORMULATION

The system under consideration is second order, discrete-
time, nonlinear system, which can be described by the
following state space model:

% (k+1)=x (k)+x (k)AT, (1)
X (k+1)=—h(x ) A1 + % (k)(1-bAT )+aAru(k), (2)

where h(x) is nonlinear continuous, bounded and real
valued function, Ay is sampling period, a,beR are scalar
parameters, k e Z is discrete time, x(k)=|x (k) %, (k)]T
, X(k)eXc]Rz, x (k) e A, Xz(k)e)(z, u(k)eUcR.
X,U are convex, compact (i.e. bounded and closed) sets

containing the origin in their interior.

I1l. NONLINEAR FUNCTION PWA APPROXIMATION

In order to compute off-line controller the nonlinear
function h(xl) must be substituted by their piece-wise

affine (PWA) approximation hy (% ), where indexes a, n

denotes PWA approximation with n polyhedral partitions
in the PWA model

ox+d, 15<x<I
X
()= 20t 0 0= sl ©)

X X
C¥ +dn, lpg<x <Ip,
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where g =inf (X;), I =sup(Xy) are respectively lower

and upper bound of x over set X', Ay =IX—-IJ is the
interval of variable x over set X'.

Variables |; define relative intersections of polyhedral
partitions on the X axis such that
O=lg<h<..<l4<Il,=1.

Absolute locations of intersections on the x axis can be

computed from: X =1,A, +1§ forall i =0,1,...,n.

The simplest PWA approximation is fixed length
partitions approximation. In that case locations of
intersections on the X axis can be computed from: I; =i/n

for all i=0,1..,n. Accuracy of the approximation is
strongly connected with the number of polyhedral partitions.
The fixed length partitions approximation provide
acceptable accuracy only for large number of sectors.
Although a large class of nonlinear functions can be
effectively approximated by PWA models with reduced
partitions number by proposed below secant approximation.
Secant Approximation of the Nonlinear Function

For secant approximation of the nonlinear function h(x )

absolute location of intersections on the h axis are equal to
b= h(lix) forall i =01...n.

Coefficients ¢,d; for each partition in (3) can be
computed in the following way

P — B

G =X @
X1
and
X = pl*
di _ pi 1XI )f)i | 1. (5)
" =12y

In order to ensure closed loop stability linear quadratic
regulator (LQR) will be applied around the origin. The
linear regulator can be chosen and applied only for linear
systems, so the model must be linear in the origin, i.e.
d; =0 for partition containing the origin in their interior

174 <0< and the coefficient d; finally takes following

form:

di :%, |ix_1>0V|iX<0,
" =1 (6)

d =0, X, <0<

Approximation error can be computed from the state
difference between PWA and nonlinear system

0
Kkt (k)= [(hQ(X1)—h(X1))AT} "

The error function can be written in the following form
e (xg) = (M} (%)~ (o)) Ar- (®)

The secant PWA approximation optimization problem
can be formulated in the following way

N; :

i

V, = min > |e" I(’)(+AX1L
0=lp<h<..<ln4<Ih=1 2o Nj

)

where Vy, is the approximation error, N >>n where N; is

the number of discrete evaluation points of function h(x)
along x; axis.

IV. CONSTRAINED TIME-OPTIMAL PWA CONTROL

The control objective is to drive the system to the origin
in minimum time. Let the sequence of control actions be
written in the following way

{u(k),u(k+1),...,u(k+N-1)}. (10)

The optimal control sequence minimizes the number of
time steps needed to reach a target region A7 < A’ from the

current state x (k). The constrained time-optimal control or

constrained minimum-time control problem is defined in the
following way:

min N, (12)
u(k),u(k+1),...,u(k+N-1)
x(k+i)eX,i=0,...,N-1
x(k+N)eX;, (12)

u(k+i)eld, i=0,...,N-1

where N denotes the number of time steps needed to reach
the target set and (1)—(2) are held for full control horizon,
ie. K,k+1,...,k+N-1.

Feedback controllers for PWA systems can be computed
using e.g. the Multi-Parametric Toolbox (MPT) for Matlab
[4], [6]. The associated solution for different states can be
stored into memory and then approximated by PWA state
feedback law. Number of regions of the controller depends
on the required controller accuracy. In general number of
polyhedral partitions of the model n and the controller N,

is different. Usually N is larger than n. The LQR set

calculated around the origin guarantee local stability of the
closed control system [1]-[3], [10], [11].

V. NUMERICAL EXAMPLE — CAR ON THE NONLINEAR HILL

The system under consideration is the car on the nonlinear
hill. Main aim of the control is to drive the car towards the
origin. The model generally is non-linear due to
trigonometric angle dependent functions. Nonlinear
continuous-time model of the car can be written as follows

b

2+—fz+h(z)=£F, (13)
m m
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where discrete-time model in state dependent form can be
written by (1)—(2) with the following coefficients a, b:

1
a=—,
m (14)
b¢
b=—,
m

where m— mass of the car, by — coefficient of linear velocity
dependent viscous friction, variable z in continuous time
corresponds to variable x; in discrete-time. The nonlinear

function h(x) is defined by a nested trigonometric

functions
h(x ) =sin(arctg (b (%)), (15)
where:
b()&):f—ocos(f—oﬁ—gqu(ﬁ), (16)
[2, ~10<x <10,
9(4) = {1, otherwise. )

Functions h(x), b(x), a(x) are constructed in order

to model smooth nonlinear hills, where hill in the origin has
two times higher altitude than surrounding hills.

Nonlinear function h(x ) with their three different secant

approximation are plotted in Fig. 1. Solid line — function
h(xl) dash-dotted line — their secant approximations with
3 partitons h3(x), dashed line - their secant
approximations with 5 partitions hg(xl) and dotted line —

their secant approximations with 13 partitions h%f (xl) .

0.5

05 r r r r
-20 -15 -10 -5 0
X4
Fig. 1. Function h(x) — solid line and their secant PWA approximations —
h3 (%) - dash-dotted line, h3 (%) - dashed line, hi> (%) - dotted

line.

PWA approximation error of the nonlinear function
h(xl) depends on the number of polyhedral partitions.
Relationship between approximation error and number of
PWA sectors in function hy (x,) is depicted in Fig. 2.

The more partitions have the PWA model the more
regions have the controller evaluated from (11). Relation
between the number of controller regions and the number of

PWA sectors in function h7(x) for the car on the

nonlinear hill model is depicted in Fig. 3. Solution of the
PWA controller has been computed using MPT Toolbox for
Matlab [6]. The smallest number of controller regions is
achieved for n = 3. Computation time in the considered
example is strongly dependent with the number of controller

~7.5.10% is about 9 hours.
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Fig. 2. Approximation error vs. number of PWA sectors in function
n
ha (Xl) :
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Fig. 3. Number of controller regions vs. number of PWA sectors in
function hg (Xl).
State responses and control signal simulated for system
e (%)
x(O):[—lo,O]T are depicted in Fig. 4. System states are

plotted by dashed lines: position of the car — state x; — thick
one, velocity of the car — state x, — thin one. Solid line
shows the control action during simulation horizon. On the

basis of the controller computed for hég(xl) it has been

simulated responses for the reference system — the car with
nonlinear function approximated by 2400 fixed length

approximated by with initial conditions:

partitions h?goo(@)zh(xl). States are plotted by dash-

dotted lines: position x; — thick one, velocity x, — thin one.
Control action for the reference system is plotted by dotted
line. As it is shown in Fig. 5 the differences between both

2400
’ hf

approximations hé3(x1) 2 (%) are clearly visible, but

not very significant.
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Fig. 4. System  responses vs. time for initial  conditions:

X(O) = [—10,0]T for the system approximated by hég (Xl) : dashed

line - states, solid line - input, and for the reference system h§400 (Xl) :
dash-dotted lines — states, dotted line - input.
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Fig. 5. Settling time of the output response of the system with initial

conditions: x(0)= [—1O,O]T and controller computed using PWA model

with n sectors in function hg (Xl) for the reference plant h?;‘OO (Xl) .

Performance of the closed loop control system is
evaluated in close to real conditions. PWA controller
computed using approximated PWA model with n partitions
operates the reference plant. The reference plant has 2400
fixed length partitions, which is practically equivalent to the
nonlinear plant. The performance analysis is made on the
basis of settling time of the control system. The settling time
is computed for each controller and depicted in Fig. 5. For
n = 3 the feedback control system is unstable. As it can be
seen from Fig. 5 settling time decreases very fast for

ne(38), and then for nx>8 the settling time is
approximately equal to 100 seconds.

V1. CONCLUSIONS
Performance of the nonlinear control system with off-line

PWA controller tuned for approximated PWA model has
been analysed. On the basis of the results shown in Fig. 1
and Fig. 2 it may be concluded that for the analysed secant
approximation of the nonlinear function, accuracy grows
when the number of the polyhedral partitions in the function

h(xl) increases. The closed loop performance of the system

is evaluated using the settling time, which is understood as
number of time steps needed to reach a target region A7 . It

is shown in Fig. 5 that the settling time decreases with the
number of polyhedral partitions only until some certain
number of sectors e.g. until ne[8,13].

As shown in Fig. 5 the performance of the system does
not depend substantially on the number of partitions in the
PWA model for n > 13. Nevertheless Fig. 3 clearly shows
that complexity of the controller grows with increasing
number of partitions. Comparison of Fig. 3 and Fig. 5 shows
that, an optimal number of PWA model partitions can be
found due to computational complexity and performance of
the system.
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