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1Abstract—Use of the standard forms for controller design is
known for a long time. Since first introduced in 1950s, many
new contributions have been proposed in the literature. In
these contributions, the standard forms are obtained for all
poles and with no zero, one zero and two zeroes systems. In this
study, for the first time, optimum values of standard form
coefficients with two variable zeroes are obtained using only
one constrained for the Integral Squared Time Error (ISTE)
and Integral of the Squared Time Error (IST2E) criteria. Again
in this study, an improved generalized controller design
approaches using standard forms with all pole and two
variable zeroes have been given for nth degree all pole systems.
By improving the previously proposed approaches, stabilities
of the overall transfer functions have been guaranteed. In the
proposed approaches, a PI or PID controller in the feed
forward path and a polynomial controller, which its degree
changes according to system degree in the inner feedback path,
have been used. Parameters of these controllers are obtained
using the standard form coefficients and the proposed simple
mathematical operations without the restrictions of the
previously proposed approaches. Comparative examples for
the use of the proposed approaches and the obtained standard
forms together with the previously proposed methods are also
given in the MATLAB.

Index Terms—Standard forms, controller design, PI, PID,
optimization.

I. INTRODUCTION

Nowadays classical controllers are still popular in spite of
many proposed modern control methods due to the robust
performance and easiness in the design steps. One of these
classical control methods is optimal controller design method
based on the minimization of the error signal by adjusting
the controller parameters with respect to the system transfer
function. Many error criteria have been proposed to
minimize the error signal in the literature. The integral
squared error (ISE) criterion is one of the most popular
criteria since these allowed solutions to be obtained in the s-
domain by using Parseval’s theorem [1] and given recursive
formula in [2]. Others are integral absolute error (IAE) and
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integral time absolute error (ITAE). However, despite of the
ISE criterion, to obtain the results of the IAE and ITAE
criteria, too much computation time or simulation is needed.
The minimization operation must be implemented for the
system in every case in the classical approach of the optimal
controller design method. Thus, these methods take too
much time and needs an expert person. Therefore, it is not
very practical.

A study about using IAE and ITAE criteria to obtain
standard forms has been presented by Graham and Lathrop
[3]. They have considered only all pole standard forms. Dorf
and Bishop [4] proposed the ISE criterion; however the
standard form coefficients have not been given in their
study. They gave obtained standard form coefficients for the
systems with one zero using the ITAE criteria for a ramp
input. General transfer function of the standard form is
given in (1)

C(s)
R(s)= cksk+ck-1sk-1+…+c1s+c0

sn+dn-1sn-1+…+d1s+d0
. (1)

Dorf and Bishop [4], [5] and some textbooks, which are
devoting a separate section for the subject, propose and use
c0 = d0 and c1 = d1 to get a zero steady-state error for a ramp
input to obtain the closed loop transfer functions of n poles
standard forms with one zero. However, this case restricts
the independently chosen control parameters. Additionally,
this does not mean that the obtained optimal coefficients are
also optimal for the step input signal. In case of that optimal
coefficients of the standard forms with a zero are required to
be obtained for a step input, then c1 ≠ d1 must be chosen [6],
[7].

Otherwise, obtained standard forms may cause very
oscillatory step responses for the same systems and there
will be an increment on the overshoot of the responses.
Atherton and Boz obtained coefficients of the standard
forms with all pole and one zero for ISTE and IST2E and
presented results in Atherton and Boz [6] and Boz [7]. As
for the use of standard forms in the controller design, many
new design methods based on standard forms are cited in the
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literature [8]–[13]. Recently, Sari and Boz also presented a
new approach to obtain the parameters of PI controller to be
used in the feed forward path by using standard forms for all
pole systems with a zero [14], [15]. Another study has been
presented by Sari and Boz in 2011 about for the first time
obtaining optimum values of standard form coefficients with
five pole and two variable zeros for ISTE and IST2E criteria
[16]. In their study, a new simple generalized controller
design approach for the new systems with all pole transfer
function has been introduced to show the use of obtained
standard form coefficients in the controller design. The
design approach was based on using the standard forms with
c1 ≠ d1, and c2 ≠ d2 optimized for the ISTE and IST2E
criteria. On the other hand, optimizations were carried out
by constraining the c1 and c2. Thus; the optimal parameters
of the standard forms were obtained only for c2 equals to 1,
2, 3 and 4, while c1 was changing 0.5 to 8. In the proposed
approach, a proportional integral derivative (PID) controller
that is in the feed forward and a polynomial controller,
which is in the feedback path were used.

In this paper, the limitations of the previously designed
controller by Sari and Boz [16] have been improved. By this
improvement the coefficients in the system transfer function
do not affect the stability unlike the previously proposed
controller. Additionally, the proposed new controller
structure has been compared with the previously proposed
control systems by using in the first two examples.
Furthermore, standard forms have been obtained for only
constraining the c2 value. In the previous studies, the c2 and
c1 were both constrained. Optimal standard form coefficients
have been calculated for c2 values changing 1 to 50 and
since the results are linear it became possible to be used for
higher values of c2 than 50. In the third and fourth examples,
these standard forms have been used with the new controller
scheme and successful results have been obtained. The
simulation results of the method with some well-known
design methods have been presented graphically for
comparison.

II. INTEGRAL PERFORMANCE CRITERIA AND STANDARD
FORMS

In general, the closed loop transfer function of a plant can
be given as presented in (1). On the other hand, the steady
state error of the system has been shown in (2)

ess= c0-d0 r(t)+ c1-d1
dr(t)

dt
+ c2-d2

d2r(t)
dt2

+

+…+ ck-1-dk-1
dk-1r(t)

dtk-1 + ck-1
dkr(t)

dtk
. (2)

In (2), r(t) is the form of input and it determines the size
of the steady-state error. c0 = d0 condition is required to get
zero steady-state error for a step function. There are many
possibilities of C(s)/R(s) for which steady state error is zero
with a step unit, because the order of the numerator of
C(s)/R(s) can be less than or equal to the order of
denominator. On the other hand, when a ramp function has
been used as an input, the steady-state error only become
zero for c0 = d0 and c1 = d1 conditions [17].

The performance definitions of a dynamical system are
usually given by their transient response. On the other hand,

to determine the transient response, the system output is
measured in terms of rising time, overshoot and steady-state
error, where a step or ramp signal is applied to the system
input. All of these measurements must be zero ideally, since
the system output must exactly follow the input signal.
However, this is not the case practically; therefore the
outputs are expected to follow the input as much as possible
closer. A controller is usually used in a system to achieve
the desired responses in case of lack of performance values.
There are many controller design methods that are
practically used currently [18], [19] and [20].

A controller normally works based on the minimization of
the error signal that is the difference between reference input
r(t), and controlled output signal c(t) as given in (3) below

e(t)→0, (3)

where t≥0. Hence, a suitable criterion to characterize the
optimal time response of a system is usually given as an
integral function of the error, or its weighted products. An
integral error criterion may be presented in a general form as
presented in (4)

J=∫ ∅[e(t),t]dt∞
0 . (4)

Therefore, an optimum dynamic performance can be
taken as the time response that gives a minimum value of J.
The integral performance criterion can be written in
different forms as given in (5) and (6), so a control system is
considered to be optimal if the selected performance index is
minimized based on the variation on the controller
parameters:

JISE=∫ e2(t)dt∞
0 , (5)

JIAE=∫ |e(t)|∞
0 dt. (6)

The time weighted versions of these two criteria have
been presented for ISE and for IAE in Zhuang [21] and
Graham and Lathrop [3], respectively. These criteria can be
expressed more general as given in (7).

Jn(θ)=∫ tn[e(θ,t)]2dt.∞
0 (7)

That is the general time weighted integral squared error
criterion, and

Jn
' =∫ tn|e(θ,t)|∞

0 dt, (8)

that is the general time weighted integral absolute error
criterion where θ refers to variable parameters which are
chosen for the minimization of Jn(θ). According to (7), J0, J1

and J2 are named as ISE, ISTE and IST2E, respectively.

III. STANDARD FORMS WITH TWO ZEROES AS A FUNCTION
OF C2

In this study, new optimum values of standard form
coefficients with four and five poles and two variable zeroes
are obtained for the ISTE and IST2E criteria by constraining
only the c2 value. The optimum values of these coefficients
for the J1 and J2 criteria for T24(s) as a function of c2, are
given in Fig. 1 and Fig. 2, respectively. Similarly, the
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optimum values of the standard form coefficients for the J1

and J2 criteria for T25(s) are given in Fig. 3 and Fig. 4,
respectively. J1 and J2 integral values for different values of
c2 for T24(s) and T25(s) are given in Fig. 5 and Fig. 6,
respectively.

Fig. 1. Optimum values of d1, d2, d3 and c1 for T24(s) with ISTE criterion.

Fig. 2. Optimum values of d1, d2, d3 and c1 for T24 (s) with IST2E criterion.

Fig. 3. Optimum values of d1, d2, d3, d4 and c1 for T25(s) with ISTE
criterion.

Fig. 4. Optimum values of d1, d2, d3, d4 and c1 for T25(s) with IST2E
criterion.

Step responses of the obtained standard forms for
different values of c2 are also given for T24(s) and T25(s) in
Fig. 7 to Fig. 10. It can be seen from the Fig. 5 and Fig. 6
that the integral error values are decreasing dramatically
while c2 value is increasing.

Fig. 5. J1 and J2 integral values for different values of c2 for T24(s).

Fig. 6. J1 and J2 integral values for different values of c2 for T25(s).

Fig. 7. ISTE step responses for different values of c2 for T24(s).

Fig. 8. IST2E step responses for different values of c2 for T24(s).
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Fig. 9. ISTE step responses for different values of c2 for T25(s).

Fig. 10. IST2E step responses for different values of c2 for T25(s).

IV. GENERALIZED OPTIMAL CONTROLLER DESIGN METHOD
WITH NO LIMITATIONS FOR NTH DEGREE ALL POLE SYSTEMS

PI and PID are well known controllers since long time.
On the other hand they are still popular in use because of
their limited number of parameters, which make them easy to
tune and their relatively robust performances [22], –[31]. In this
section an improved PI and PID controller tuning methods
using the standard forms and additional polynomial feedback
controller will be given.

nth degree all pole system’s transfer function can be
represented by

G(s)= a0

bnsn+bn-1sn-1+…+b2s2+b1s+b0
. (9)

This system had been controlled using a polynomial
controller in the inner feedback path and a PI controller in
the feed forward path by Boz and Sari [15], and a PID
controller in the feed forward path by Sari and Boz [16].
Transfer function of the system which use PI controller in

the feed forward path had been given as follows

T(s)= l1a0s+l0a0

bnsn+1+bn-1sn+ bn-2+a0kn-2 sn-1+…

…+(b1+a0k1)s2+(a0k0+a0l1+b0)s+a0l0. (10)

Again, transfer function of the system which use PID
controller in the feed forward path had been given as
follows

T(s)= l2a0s2+l1a0s+l0a0

bnsn+1+bn-1sn+ bn-2+a0kn-2 sn-1+…

…+(b1+a0k1+a0l2)s2+(a0k0+a0l1+b0)s+a0l0. (11)

In the both transfer functions, the coefficient belonging sn

is equal to bn-1 which is a coefficient of the system, and it is
independent from the controller parameters. This means that
the standard form coefficients are directly related to bn-1 and
they have not been chosen independently. As a result of this,
the error on the system response curves will increase when
the coefficients of bn-1 decrease. This might also drive the
controlled system into the instability. In this study, this
unwanted case for both control systems has been removed
by increasing the polynomial controller by one degree.
Thus, now all of the coefficients of the closed loop control
system parameters can be independently adjusted according
to the standard form coefficients. This also eliminates the
instability of the system and guarantees the stability.
Furthermore, bn coefficient has been taken equal to 1 for the
simplification. The realization steps and formulation of both
improved methods have been given below.

A. Design by Using A PI Controller in the Feed Forward
Path

The system at (9) can be controlled using a PI controller
in the feed forward path and a polynomial controller in the
inner feedback path as shown in Fig. 11.

Closed loop transfer function of the inner feedback
controller and the system can be represented as

G'(s)= a0

sn+ bn-1+a0kn-1 sn-1+ bn-2+a0kn-2 sn-2+…

…+(b2+a0k2)s2+(b1+a0k1)s+a0k0+b0, (12)

and the resulting closed loop transfer function of G'(s), the
PI controller and the unity feedback is given by

T(s)= l1a0s+l0a0

sn+1+(bn-1+a0kn-1)sn+ bn-2+a0kn-2 sn-1+…

…+(b1+a0k1)s2+(a0k0+a0l1+b0)s+a0l0. (13)

Fig. 11. The use of PI controller in the feed forward path for nth degree all pole systems.
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To simplify the analysis, numerator and denominator
coefficients of the system’s closed loop transfer function can
be arranged as:

dn=bn-1+a0kn-1, (14)
dn-1=bn-2+a0kn-2, (15)
dn-2=bn-3+a0kn-3, (16)

d3=b2+a0k2, (17)
d2=b1+a0k1, (18)

d1=b0+a0k0+a0l1, (19)
d0=a0l0=1, (20)

c1=a0l1. (21)

Substituting these values into the (13) gives the new
transfer function of the system, to be

T(s)= c1s+1
sn+1+dnsn+dn-1sn-1+…+d2s2+d1s+1

, (22)

where n+1 degree standard form with a variable zero can be
represented as in (22). Using (14) to (21) with the transfer
function given in (22) results in the controller parameters as:= , (23)= , (24)

k0= d1-c1-b0
a0
, (25)

k1= d2-b1
a0
, (26)

k2= d3-b2
a0
, (27)

k3= d4-b3
a0
, (28)

kn-2=
dn-1-bn-2

a0
, (29)

kn-1=
dn-bn-1

a0
(30)

or generalizing the formula for k=0, 1, 2, 3, 4, …. n-1∑ ki=
d1-c1-b0

a0
+∑ di+1-bi

a0

n-1
i=1

n-1
i=0 , (31)

and ∑ li=∑ ci
a0

1
i=0

1
i=0 (32)

equations can be obtained.

B. Design by Using a PID Controller in the Feed Forward
Path

The system at (9) can be controlled using a PID controller
in the feed forward path and a polynomial controller in the

inner feedback path as shown in Fig. 12.
Closed loop transfer function of the inner feedback

controller and the system can be represented as

G'(s)= a0

sn+ bn-1+a0kn-1 sn-1+ bn-2+a0kn-2 sn-2+…

…+(b2+a0k2)s2+(b1+a0k1)s+a0k0+b0, (33)

and the resulting closed loop transfer function of G'(s), the
PID controller and the unity feedback is given by

T(s)= l2a0s2+l1a0s+l0a0

sn+1+(bn-1+a0kn-1)sn+ bn-2+a0kn-2 sn-1+…
(34)

…+(b1+a0k1+a0l2)s2+(a0k0+a0l1+b0)s+a0l0,
To simplify the analysis, numerator and denominator

coefficients of the system’s closed loop transfer function can
be arranged as:

dn=bn-1+a0kn-1, (35)
dn-1=bn-2+a0kn-2, (36)
dn-2=bn-3+a0kn-3, (37)

d3=b2+a0k2, (38)
d2=b1+a0k1+a0l2, (39)
d1=b0+a0k0+a0l1, (40)

d0=a0l0=1, (41)
c1=a0l1, (42)
c2=a0l2. (43)

Substituting these values into the (34) gives the new
transfer function of the system, to be

T(s)= c2s2+c1s+1
sn+1+dnsn+dn-1sn-1+…+d2s2+d1s+1

, (44)

n+1 degree standard form with two variable zeros can be
represented as in (44). Using (35) to (43) with the transfer
function given in (44) results in the controller parameters as:

l0= 1
a0
, (45)

l1= c1
a0
, (46)

l2= c2
a0
, (47)

k0= d1-c1-b0
a0
, (48)

k1= d2-c2-b1
a0
, (49)

k2= d3-b2
a0
, (50)

k3= d4-b3
a0
, (51)

kn-2=
dn-1-bn-2

a0
. (52)

Fig. 12. The use of PID controller in the feed forward path for nth degree all pole systems.
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kn-1=
dn-bn-1

a0
(53)

or generalizing the formula for k=0, 1, 2, 3, 4, …. n-1∑ ki=∑ ( di+1-ci+1-bi
a0

1
i=0 )+∑ ( di+1-bi

a0
)n-1

i=2
n-1
i=0 , (54)

and ∑ li=∑ ci
a0

2
i=0

2
i=0 (55)

equations can be obtained.

V. EXAMPLES

In this section, four examples have been given for the
proposed method. The first two examples are given with a
system using PI controller, and other two examples are
implemented in a system with PID controller. The third and
fourth examples have been implemented by using new
standard forms obtained in this study. In the examples, for
the method developed by Boz and Sari [15]; B-S method,
and for the method developed by Sari and Boz [16]; S-B
method have been used. On the other hand, for the method
developed in this study; S-K-B method expression has been
used. For the same systems, results of some well-known PID
controller design methods are also obtained. These are
Astrom Hagglund (A-H) [18], Gain-phase (G-P) [20] and
Refined Ziegler-Nichols (R. Z-N) [19], controller design
methods.

A. Example 1
Consider the third order all pole transfer function

G(s)= 2
s3+s2+6s+3

, (56)

Comparing the transfer function of this system with that
of (9), gives the following values, n = 3, a0 = 2, b3 = 1, b2 =
1, b1 = 6 and b0 = 3. Then choosing c1 = 6 for IST2E criteria
from [32] and using them in the generalized formulae,
which are given in (31) and (32), result in the controller
parameters and these data are summarized in Table I with B-
S method results and summary of the results obtained from
A-H, G-P and R. Z-N methods. Finally, step responses of all
design methods together with that of the suggested design
method, S-K-B, are plotted in the same figure for
comparison (Fig. 13).

TABLE I. RESULTS OF EXAMPLE 1.
Results of suggested controller

designs (S-K-B) and B-S
methods

Results obtained from A-H, G-P
and R. Z-N methods

B-S S-K-B A-H G-P R. Z-
N

c1 6 6 Kc 1,514 1,514 1,514
d1 7,18 7,18 ωc 2,45 2,45 2,45
d2 7,67 7,67 Tc 2,56 2,56 2,56
d3 3,48 3,48  4
J 0,53 0,53 m 45

 1,04
l1 0,0712 3 Kp 1,07 0,77 0,91
l0 0,0034 0,5 Ti 1,97 0,82 1,28
k2 1,24 Td 0,493 0,33 0,32
k1 -2,683 0,83
k0 -1,486 -0,91

Fig. 13. Step responses for Example 1.

B. Example 2
In this case, consider the fourth order all pole transfer

function

G(s)= 6

s4+s3+12s2+5s+3
. (57)

Coefficients of the transfer function are n = 4, a0 = 6, b4 =
1, b3 = 1, b2 = 12, b1 = 5 and b0 = 3. Again choosing c1 = 6
for IST2E criteria from [33] and using them in the generalized
formulae, which are given in (31) and (32), result in the
controller parameters and these data are summarized in
Table II with B-S method results and summary of the results
obtained from A-H, G-P and R. Z-N methods. Finally, step
responses of all design methods and suggested design
method, S-K-B, are also given in Fig. 14.

TABLE II. RESULTS OF EXAMPLE 2.
Results of suggested controller

designs (S-K-B) and B-S
methods

Results obtained from A-H, G-P
and R. Z-N methods

B-S S-K-B Å-H G-P R. Z-N
c1 6 6 Kc 5,333 5,333 5,333
d1 7,676 7,676 ωc 2,236 2,236 2,236
d2 11,376 11,376 Tc 2,81 2,81 2,81
d3 8,5894 8,5894  4
d4 3,2725 3,2725 m 45
J 2,9 2,9  0,4754

Kp 3,77 2,71 3,2
l1 0,0087 1 Ti 2,16 2,635 1,405
l0 0,0004 0,167 Td 0,54 0,343 0,35
k3 0,379
k2 -1,866 -0,57
k1 -0,779 -1,06
k0 -0,498 -0,22

Fig. 14. Step responses for Example 2.
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C. Example 3
Consider the third order all pole transfer function

G(s)= 5
s3+s2+11s+2

, (58)

Comparing the transfer function of this system with that
of (9), gives the following values, n = 3, a0 = 5, b3 = 1, b2 =
1, b1 = 11 and b0 = 2. Then choosing c2 = 20 for IST2E
criteria from Fig. 2 and using them in the generalized
formulae, which are given in (54) and (55), result in the
controller parameters and these data are summarized in
Table III with S-B method results and summary of the
results obtained from A-H, G-P and R. Z-N methods.
Finally, step responses of all design methods and suggested
design method, S-K-B, are plotted in the same figure for
comparison (Fig. 15).

TABLE III. RESULTS OF EXAMPLE 3.
Results of suggested controller

designs (S-K-B) and B-S
methods

Results obtained from A-H, G-P
and R. Z-N methods

S-B S-K-B Å-H G-P R. Z-N
c1 5,238 5,238 Kc 1,8 1,8 1,8
c2 20 20 ωc 3,32 3,32 3,32
d1 5,582 5,582 Tc 1,89 1,89 1,89
d2 21,85 21,85  4
d3 7,1355 7,1355 m 45
J 0,0018 0,0018  1

Kp 1,273 0,91 1,08
l2 0,07856 4 Ti 1,456 0,68 0,947
l1 0,00288 1,0476 Td 0,364 0,24 0,237
l0 0,00008 0,2
k2 1,2271
k1 -2,1927 -1,83
k0 -0,3998 -0,3313

Fig. 15. Step responses for Example 3.

D. Example 4
Consider the fourth order all pole transfer function

G(s)= 7

s4+s3+9s2+7s+3
, (59)Coefficients of the transfer

function are n = 4, a0 = 7, b4 = 1, b3 = 1, b2 = 9, b1 = 7 and b0

= 3. Again choosing c2 = 20 for IST2E criteria from Fig. 4
and using them in the generalized formulae, which are given
in (54) and (55), result in the controller parameters and these
data are summarized in Table IV with S-B method results.

Summary of the results obtained from A-H, G-P and R.
Z-N methods are given in Table IV. Finally, step responses
of all design methods and suggested design method, S-K-B,
are also given in Fig. 16.

TABLE IV. RESULTS OF EXAMPLE 4.
Results of suggested

controller designs (S-K-B)
and B-S methods

Results obtained from A-H, G-P
and R. Z-N methods

S-B S-K-B Å-H G-P R. Z-N
c1 4,531 4,531 Kc 1,572 1,572 1,572
c2 20 20 ωc 2,646 2,646 2,646
d1 5,3245 5,3245 Tc 2,375 2,375 2,375
d2 23,8405 23,8405  4

d3 17,0328 17,0328 m 45

d4 5,1292 5,1292  1,033
J 0,071 0,071 Kp 1,111 0,795 0,943

Ti 1,825 0,777 1,187
l2 0,021173 2,8571 Td 0,456 0,304 0,297
l1 0,000935 0,6473
l0 0,00004 0,1429
k3 0,82584
k2 -1,6705 1,60656
k1 -2,9943 -2,2319
k0 -1,3998 -1,2413

Fig. 16. Step responses for Example 4.

VI. CONCLUSIONS

In this study, previously proposed controller systems by
Boz and Sari [15] and Sari and Boz [16] have been
improved by increasing the polynomial controller, which is
used in the feedback path, one degree and thus the
limitations in the previous controllers have been removed.
By this improvement the coefficients in the system transfer
functions do not affect the stability of the overall system.
Thus, the stability is guaranteed. The proposed new
controller structures have been compared and the advantages
of its performances over the previous proposed system
together with some well-known design methods are shown
in the first two examples. Additionally, in this study
standard forms with two variable zeros have been obtained
for only constraining the c2 value. In the previous studies,
both c2 and c1 values were constrained and the standard form
coefficients were obtained only for c2, which equal to 1 to 4.
However, in the proposed model, the standard forms have
been calculated for c2, which is equal to 1 to 50 and since
the results are linear it became possible to be used for higher
values of c2 than 50. Also, since the obtained standard form
values are almost linear, it is possible them to be expressed
mathematically and they can be used in a microprocessor
based control structure very easily. Thus there is no need to
optimize the system every time. In the third and fourth
examples, these standard forms have been used with the new
controller scheme and successful results have been given
together with some well-known design methods. As it can
be seen from the example results, the proposed method
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gives better performance values. Use of standard forms in
the proposed design methods directly targets the step
response of the system; therefore it is very advantageous to
use it. Another application area of the method is the state
feedback design since the polynomial feedback controller
uses feedback from the derivatives of the output, which can
be stated as the system states in case of the system is
represented in controllable canonical form. Since any
controllable system can be put in this form by a state
transformation, the design approach can be applied to state
feedback design for any controllable system as given in
[12]. If all state coordinates are not directly available, then
a state observer may be used as a solution of this problem.
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