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1Abstract—In this paper, we propose one novel and efficient
K nearest neighbours search algorithm based on 3D uniform cell
grids. First, a simple min-max box is used to store all the points
and a twice division strategy is adopted to determine the edge
length of basic grids. Then we limit the search space for each
grid with certain query points to control the amount of distance
calculations under a suitable level. And the computational cost
of sorting operations is reduced effectively through avoiding the
unnecessary calculations, with the help of properly determined
subspaces and sphere spaces for points. Compared with existing
related algorithms, our method can search for the K nearest
neighbours accurately and quickly, and it has many possible
applications in the fields using 3D scattered point clouds.

Index Terms—K nearest neighbours, search algorithm, 3D
point cloud, cell grids.

I. INTRODUCTION

Point primitives have been used popularly as one kind of
surface representation in the fields of virtual reality, scientific
visualization, geometric modelling, reverse engineering, and
so on [1]–[4]. With the advanced scanning technologies, it is
possible for lots of real objects to be scanned into 3D point
clouds [5]. Note that the point cloud is nothing more than 3D
coordinates of a collection of scanned points, and contains no
topological information [6]. But other additional geometric
information on the surface, such as surface normal or local
curvature [7] which have to be calculated from the positional
data, are required necessarily for the subsequent processing
[8]. What is common to obtain local geometric information
from the point cloud is to calculate K nearest neighbours for
each point [9]. Getting the neighbours is meaningful. First, the
calculation can be as small as possible to allow efficient
processing of mass data sets. Second, neighbours guarantee
that their local geometric information can be approximated
provably well to a certain extent.

Aiming at increasing search speed, many research works
have been performed consequently, and they are developed
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based on the basic idea: all the scattered points are firstly
divided into small “regions” and stored into the related spatial
data structure, then some strategies are used to find K nearest
neighbours for the query point. There are different kinds of
shapes already been adopted for the small regions, including
Voronoi diagram [10], [11], hyper rectangular bucket
[12]–[14] (e.g. K-d tree, Quadtree and Octree), bounding
rectangle [15], [16] (e.g. R-tree and SR-tree), bounding
sphere [17] (e.g. SS-tree), pyramid [18] and uniform cell grids
[19], [20].

All the methods intended to set up reasonable and efficient
data storage structures to search for the K nearest neighbours
of query point with higher speed. However, the calculation of
Voronoi diagram is still unbearable especially for the large
scattered point sets. Comparatively, other data structures are
more effective and acceptable. Bentley’s method of K-d tree
[21] has been widely used. It partitions the data space into
hyper-rectangular buckets, then K nearest neighbours of any
query point are obtained with a binary search for the target
bucket and a local search for desired points in target bucket
and its neighbouring buckets. A fast K nearest neighbours
algorithm proposed by Sankaranarayanan [22] identifies a
region in space that contains all of the K nearest neighbours
for a collection of points. Each query point searches only the
locality for the correct set of K nearest neighbours once the
best possible locality is built. What's more, any hierarchical
spatial data structure can be used in this method including
some structures that are based on object hierarchies such as
R-tree, Quadtree and Octree.

Different with the above methods, the algorithm presented
in our paper divides the point cloud data into the basic 3D
uniform cell grids using a twice division strategy. Based on
the adjacent relationship between arbitrary 3D cell grid and
the grids around it, related subspaces and sphere spaces are
defined with the outwards expansion of cell grid, and they are
used to limit the search space for each grid. Through reducing
the expense of sorting operations, our approach can obtain the
K nearest neighbours with less time.

The rest of our paper is organized as: the preliminary work
to establish the 3D cell grids are presented in Section II, the
proposed novel search algorithm is described in Section III,
experimental results are given and analysed in Section IV, and
finally the conclusion is drawn in Section V.
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II. PRELIMINARY

Before searching for K nearest neighbours in a set of point
cloud, the 3D cell grids need to be established to divide all
scattered points into related units including two types: empty
grids and non-empty grids, while each non-empty cell grid
contains at least one point.

The minimum and maximum values of x, y, z coordinates
of all points are denoted as minx , miny , minz and maxx ,

maxy , maxz respectively. Then length, width and height of
the cuboid containing the point cloud are calculated as:

max min ,a x x  (1)

max min ,b y y  (2)

max min .c z z  (3)

For the cuboid with volume V abc , in ideal situation the
scattered points are distributed in its 3D space uniformly.
Suppose the space is well divided so that each grid contains
one point, the edge length of each grid can be preliminarily set

as 30
VL
N

 . In this case, there are 0 0 0l m n  divided cell

grids, where:

0
0

,al
L
 
  
 

(4)

0
0

,bm
L
 
  
 

(5)

0
0

.cn
L
 
  
 

(6)

In fact, the scattered point cloud is seldom well distributed
as above. Therefore, suppose cubeN is the total number of 3D
cell grids that actually contain at least one point, the average

density of points in cuboid is computed as 3
0cube

N
N L

 


.

Since our algorithm is designed to search for K neighbours
of every point, we can make a necessary adjustment based on
the average density for the edge length of each grid as

3 ,KL 


  (7)

where  is the adjusting parameter, and its value may vary
for different kinds of scattered point clouds.

Then the points are divided for the second time and are
re-distributed into l m n  grids, where:
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Now, any cell grid in the cuboid can be denoted with the
index number ( , , )i j k , which is equivalent to the following
descriptions:

min ,x x iL  (11)

min ,y y jL  (12)

min ,z z kL  (13)

where ( , , )x y z is the grid vertex with minimum coordinates.

III. OUR SEARCH ALGORITHM

A. Related Definitions
Definition (1), Subspace:
Let the space  0 0 0( , , ) | max( , , )i j k i i j j k k r   

be a subspace of the grid 0 0 0( , , )i j k and denoted as ( )S r ,
which is obtained by the extension outwards with r times of
the edge length L from the cell grid 0 0 0( , , )i j k . If the
minimum and maximum grid vertices of the subspace belong
to grid 1 1 1( , , )i j k and grid 2 2 2( , , )i j k respectively, subspace

( )S r can be also denoted as 1 1 1 2 2 2( , , , , , )i j k i j k .
Definition (2), Ultimate space:
After extension outwards for s times with edge length L

from the grid 0 0 0( , , )i j k , if subspace ( )S s contains the K
nearest neighbours of an arbitrary point in grid 0 0 0( , , )i j k for
the first time, subspace ( )S s is an ultimate space and denoted
as ultimateS . The ultimate space is used to limit the search
range for any query point in grid 0 0 0( , , )i j k .

Definition (3), Sphere space:
Given one query point O in grid 0 0 0( , , )i j k , the sphere

with radius R centred with O is the sphere space of point O ,
and is denoted as sphereS .

For any query point in a non-empty cell grid, two kinds of
its sphereS are introduced: internal sphere space insphereS ,

and external sphere space outsphereS . The radius of insphereS

and the radius of outsphereS are denoted as inR and outR

respectively, where inR is less than outR .
To illustrate the relationships among ultimateS , outsphereS

and insphereS , a 2D sectional view is shown in Fig. 1. The

query point O is marked with “+”, and its corresponding cell
grid is marked with the smallest square. ultimateS of the grid is
represented by the outermost square, outsphereS of the point is

represented by the outer circle, while insphereS of the point is

shown with the inside circle. Also, we denote the shadow area
as outsphere insphereS S , the difference between these two

sphere spaces for the same query point.
The idea to adopt insphereS and outsphereS for query point

O is: checking all the points in ultimateS , if the number of
points in insphereS is no more than K, all these points are

taken as neighbours of query point O , and the rest of
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neighbours are selected through sorting the points in space
outsphere insphereS S ; otherwise, the K nearest neighbours are

obtained by sorting points within the space of insphereS .

Fig. 1. Relationships of ultimateS , outsphereS and insphereS .

Since the cost of sorting algorithm in 1D space is log 
( is the scale of space), searching algorithm of K nearest
neighbours for 3D space requires much more number of
sorting operations. Therefore, choosing suitable values of

insphereS , outsphereS and ultimateS is very helpful to control

the number of basic operations, and is thus crucial for our
algorithm.

B. Determinations of insphereS , outsphereS and ultimateS

Assume query point O is located at an arbitrary position in
grid 0 0 0( , , )i j k , we can extend the grid outwards gradually
until subspace ( )S p (shown in Fig. 1), which is extended for
p times of edge length L and contains no less than K points

for the first time. Also we denote , ,dx dy dz as the larger
distances from query point O to the two surfaces of its grid

0 0 0( , , )i j k along x-axis, two surfaces along y-axis, and two
surfaces along z-axis respectively. If the coordinates of query
point O are  , ,o o ox y z , there are:

0 0max( , ( 1) ),o odx x i L i L x    (14)

0 0max( , ( 1) ),o ody y i L i L y    (15)

0 0max( , ( 1) ).o odz z i L i L z    (16)

(1) Determining of insphereS

Suppose shortd is the minimum value of shorter distances
between query point O and the two surfaces of its grid along
x-axis, y-axis and z-axis, it can be described as

min( , , ).shortd L dx L dy L dz    (17)

Thus the radius inR of insphereS can be calculated as

.in shortR pL d  (18)

Obviously, if the number of points in the internal sphere
space insphereS of the query point O is less than or equal to

K, they must all belong to the K neighbours of point O
without taking any sorting operations.

(2) Determining of outsphereS

Since subspace ( )S p has expanded p times of the edge
length L from grid 0 0 0( , , )i j k , the radius outR of

outsphereS can be described as

2 2 2( ) ( ) ( ) .outR dx p L dy p L dz p L         (19)

From (14)–(16), it is easy to know that values of , ,dx dy dz
are less than edge length L . Thus the distance d from the
query point O to any other point in ( )S p must be satisfied
with

( 1) 3 .outd R p L   (20)

Since there are at least K points in subspace ( )S p , the
number of points in outsphereS must be more than or equal to

K, i.e. all the K nearest neighbours of query point O are
located in space outsphereS .

(3) Determining of ultimateS

Similar with subspace ( )S p , subspace ( ( 1) 3 1)S p   
is obtained after expanding the 3D cell grid 0 0 0( , , )i j k for

( ( 1) 3 1)p    times of edge length L , and

( ) ( ( 1) 3 1).S p S p     (21)

Since ( )S p contains at least K nearest neighbour points
for query point O , for any arbitrary point in the same grid

0 0 0( , , )i j k , its K nearest neighbours can be limited in space

( ( 1) 3 1)S p    , which is the ultimateS of all points in the

3D cell grid 0 0 0( , , )i j k .
The mechanics of our algorithm are shown in Fig. 1. For

example, if 2p  , ultimateS of the related grid 0 0 0( , , )i j k is

set as ( (2 1) 3 1)S     = (6).S For query point O in cell

grid 0 0 0( , , )i j k , all the K nearest neighbours can be obtained
from its corresponding spaces insphereS and outsphereS .

C. Implementation of Searching Algorithm
For 3D scattered points, there are usually more than one

point in most of non-empty cell grids, as shown in Fig. 2. Of
course, all the points in the same cell grid share the common

( )S p and ultimateS .
When searching for K nearest neighbours for the first point

in cell grid, we record ultimateS and p . Then the other points
in the same grid can directly use the value of p to compute
both inR of insphereS and outR of outsphereS without
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extending subspace from the original grid gradually and
repeatedly. In this way, we can avoid a large number of
unnecessary calculations, and thus improve the search
efficiency.

Fig. 2. Points P and Q in the same 3D cell grid.

The specific steps of our algorithm are as follows:
Step 1. Calculate the edge length L of 3D cell grid and

divide all points into the grids;
Step 2. Traverse all the scattered points in point cloud, for

any query point P, if the cell grid with point P has already
been visited, go to Step 3; otherwise calculate the subspace

ultimateS and record the intermediate value p , then set status
of the cell grid as visited;

Step 3. Calculate radius inR of insphereS and radius outR

of outsphereS for the query point P;

Step 4. Count the number of points (denoted as  ) in
subspace insphereS for query point P:

– If K  , all the points in subspace insphereS belong to

K neighbours of point P, and the remaining ( K  )
neighbours are selected through sorting operations from
the points in space outsphere insphereS S ;

– If K  , all the points in subspace insphereS are just

the K neighbours of point P;
– If K  , all the K neighbours of point P must be

located in subspace insphereS , and they can be selected

through sorting operations from the points in insphereS .

Step 5. Go to Step 2, until all the scattered points in point
cloud have been visited and processed.

IV. EXPERIMENTAL RESULTS

Experiments are conducted to evaluate the performance of
our algorithm, and the experimental environment is Intel(R)
Core(TM) 2 Duo CPU E7400 processor 2.80 GHz, 2.0 GB
RAM, Windows XP Operation System, and Microsoft Visual
Stdio.Net 2008 IDE. The employed 3D scattered point clouds
for experiments are often used in computer graphics or other
relevant fields, and the number of points in these 3D scattered
point clouds range from 10 k to 120 k.

According to [22], two parameters are usually applied to
compare the effects of different kinds of K nearest neighbours
searching algorithms: the executed time, and the Euclidean
distance sensitivity which is defined and calculated with the
following

( _ ) ,
log

N dist calc
N NS


 (22)

where S


and ( _ )N dist calc represent distance sensitivity
and total number of point distance calculations (the most time
consuming operations for sorting points) respectively, while

logN N is the cost of sorting N points.

A. Verification of Searching Accuracy
To verify the accuracy of our new searching algorithm for

K nearest neighbours, the Stanford Bunny model containing
35,947 points is taken as test data set, as shown in Fig. 3. We
consider all possible cases of query points, which are divided
into four categories: (a) the query point is one of the smooth
points sampled from the back of bunny; (b) the query point is
one of the ridge points sampled from the ear of bunny and the
curvature of these points changes significantly; (c) the query
point is one man-made point, which is far from the back of
bunny; (d) the query point is one man-made point, which is
located between two ears of bunny.

Figure 3 illustrates the above four categories of query
points selected from the bunny model and marked by “+”. K is
set as 20, and the corresponding 20 nearest neighbours are
searched for every query point. To show them clearly, the
searched K neighbour points are circled by curves.

a) b)                                         c)                                            d) e)
Fig. 3. Different types of query points and their K nearest neighbours.
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B. Adjustment of Parameter 

a) b)

c) d)
Fig. 4. The effects from parameter  on (a) pre-processed time, (b)
searched time, (c) total time, and (d) Euclidean distance sensitivity for
different values of K.

Parameter  in (7) is the key parameter of our algorithm,
since it affects the edge length of 3D cell grids and thus
influences the following step of subspace expansion. So we
study the effects of different  on the performance of the
proposed K nearest neighbours’ algorithm with the 3D point
cloud of Stanford Bunny model. For a given integer value of
K, i.e. 8, 16, 32, 64, the corresponding value of  varies
from 0.10 to 0.50. Performance of our algorithm is evaluated
through measuring the executed time (including pre-process
time, searched time, and the sum of them, i.e. total time) and
the value of Euclidean distance sensitivity. The pre-process
time is the period used to read point cloud from model file and
then divide the points into corresponding spatial data storage
structure, i.e. the 3D cell grids; the searched time is the period
used to search for the K nearest neighbours based on the cell
grids; while the total time is the whole period including the
pre-process time and the searched time.

Figure 4(a) shows the effects of  on the pre-process time
for different K values. When  is a larger value, the
pre-process time is less. Since larger  produces bigger 3D
each grid, and thus the division time for points is less.
Figure 4(b) shows the effects of  on searched time. If  is
too small, there will be a huge number of small 3D cell grids
to be processed; if  is too big, the cost for each big grid will
be increased obviously. When  is between 0.25 and 0.3, the
curves display higher searching efficiencies. Figure 4(c)
shows the effects of  on total time, where the curve shapes
are nearly the same as those of Fig. 4(b), due to the fact that
pre-process time is only a small proportion in the total time of
our algorithm. Figure 4(d) shows the effects of  on distance
sensitivity, and it can be found that the distance sensitivity is
relatively low when  is very small or varies from 0.22 to
0.26.

Then we give further analysis on the relationships between
parameter  and the average numbers of points in ultimateS ,

insphereS , outsphereS , and average number of nearest

neighbours obtained directly from the points in insphereS

without taking any sorting operations, as illustrated in Fig. 5.

a) b)

c) d)
Fig. 5. The effects from parameter  on (a) average points in ultimateS ,

(b) average points in insphereS , (c) average points in outsphereS , and (d)

average number of nearest neighbours found directly from insphereS for

different values of K.

Figure 5(a) shows that when  varies round 0.26, the
average points in ultimateS can be controlled under a
relatively stable and low number; Fig. 5(b) and Fig. 5(c) show
the similar varying tendency as Fig. 5(a), since  affects the
spaces ultimateS , insphereS and outsphereS in a similar way;

Fig. 5(d) shows that when  varies between 0.20 and 0.26, a
higher number of average nearest neighbours can be directly
obtained from the space insphereS without any sorting

operations, which is very helpful to avoid the unneeded
computations and thus improve the searching efficiency of
our algorithm.

From the experiments it can be found that parameter 
indirectly affects the speed to search for K nearest neighbours
through the edge length of 3D cell grids. If  is very large,
although ultimateS can be determined quickly, both insphereS

and outsphereS contain excessive numbers of points, and thus

will decrease the search efficiency. On the contrary, if  is
very small, although insphereS and outsphereS contain less

numbers of points, the number of cell grids will be huge due to
the small edge length of basic cell grids, accordingly
expansion speed of the subspaces will also be slow.

Therefore, to guarantee the higher search efficiency, there
should be a suitable value of  . Based on aforementioned
analysis of the experimental results, in our work parameter 
is set between 0.22 and 0.30.

C. Comparison with Related Algorithms
Our algorithm is further evaluated through comparing both

executed time and distance sensitivity with the other existing
related methods, i.e. Bentley’s method [21] (represented with
Bent’s) and Sankaranarayanan’s method [22] (represented by
Sank’s), which are popularly used.

85



ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 20, NO. 1, 2014

a)                                             b)                                             c) d) e)
Fig. 6. Point clouds of five 3D models: foot, bust, golf, horse and teeth (from left to right).

a) b)

c) d)

e) f)

g) h)

i) j)
Fig. 7. Comparisons for the executed time and the distance sensitivity of
three algorithms: Bent’s, Sank’s and Ours, on the point clouds of five 3D
models (foot (a), (b); bust (c), (d); golf (e), (f); horse (g), (h); teeth (i), (j)).

The point clouds of five 3D models are employed for

experiments, and they are: foot with 10016 scanned points,
bust with 25126 scanned points, golf with 39479 scanned
points, horse with 48485 scanned points, teeth with 117871
scanned points, as shown in Fig. 6. During experiments,
different values of K, i.e. 16, 32, 64, are adopted to obtain the
comprehensive comparisons among the three searching
methods.

The experimental results are shown in Fig. 7, where each
row displays the results from one of the five 3D models. The
executed time includes pre-processed time, searched time and
total time. They are illustrated by blue, red and green bars
respectively, while the height of green bar is the sum of the
heights of blue bar and red bar.

It can be found from Fig. 7 that the pre-processed times for
three methods have only slight differences, but our method
has the least searched time and total time, i.e. having the best
search efficiency. As for Euclidean distance sensitivity, our
method is superior to Bent’s method and inferior to Sank’s
method. The reason is that we have to perform many distance
calculations to obtain ultimateS , insphereS , outsphereS . But

these computations are necessary since they are very helpful
to reduce the searched time in the following steps, and achieve
the final results with less total time.

V. CONCLUSIONS

In this paper, a novel search algorithm is proposed for K
nearest neighbours based on 3D cell grids. The contributions
of our approach include: (1) we use a simple min-max box
composed of 3D uniform cell grids to store all the scattered
points, and adopt the twice division strategy to determine the
edge length of the cell grids in order to control the step of
extension outwards from the original query cell grid; (2) to
control the distance calculations under a suitable level, we
introduce the “ultimate space” to limit the search space for
each cell grid with certain query points; (3) to reduce the scale
of sorting operations for scattered points, we define the sphere
spaces including “internal sphere space” and “external sphere
space”, from them the K nearest neighbours can be obtained
while unneeded sorting operations are avoided; (4) for the
situation that there are more than one point in the same cell
grid, we only need to calculate the “ultimate space” of the cell
grid for one time, and the corresponding values can be
recorded to avoid repeated calculations when all the points in
the same grid are considered as query points.

Experimental results have proved the accuracy of our new
algorithm. Based on statistical analysis, setting of parameter is
discussed. Through comparisons with the existing related
methods, our algorithm has shown the advantages of owning
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much better search efficiency while controlling the distance
sensitivity under a suitable level.
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