
ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 20, NO. 7, 2014

1Abstract—An evolutionary design method of image filter
based on hardware-in-the-loop (HIL) simulation is proposed. An
image filter evolvable system based on System Generator was
designed. Experimental results and analyses demonstrate that
the optimal evolved filter outperforms traditional filters both on
performance and implementation costs. In comparison with the
existing evolutionary design methods of image filter, the
proposed strategy brings higher computational ability and more
flexibility. Evolutionary algorithm of the evolvable system can
be synthesized into hardware which provided a basis for the
follow-up research to achieve online adaptive filtering.

Index Terms—Evolutionary algorithm, evolvable hardware,
hardware-in-the-loop simulation, image filtering.

I. INTRODUCTION

Image filters widely used in the pre-processing phase, are
an important part of the image processing systems.
Traditional design process of image filter is mostly based on
experimental work with the images and it leads to a very time
consuming job [1]. Evolvable hardware (EHW) [2]–[7] was
introduced to the design of image filter, due to the limitations
of traditional image filter design methods. EHW includes
evolutionary design and online adaptive hardware.
Evolutionary design refers to self-reconfiguration hardware
design, where the configuration is under the control of an
evolutionary algorithm (EA) [4]. The evolutionary design
method can explore the regions in design space that are
beyond the scope of conventional methods [2]. In recent
years, several studies are being focused on the evolutionary
design of image filter [1], [8]–[12]. These methods can be
classified into different classes based on the location of the
fitness evaluation module and the evolutionary algorithm:

1. Extrinsic hardware evolution (EHE)—The image filters
were evolved only by using a virtual reconfigurable circuit
(VRC) simulated in software, no evolution in hardware was
performed [1]. The main drawback of this approach is that
the discrepancy between hardware and simulation models.
Another disadvantage is the slow evolution speed due to
the serial execution feature of software.
2. PC-based intrinsic hardware evolution (PCIHE)—The
candidate circuits were evaluated in a reconfigurable
device while EA was executed on a PC or a cluster of
workstations [9], [10]. This approach suffers from slow

Manuscript received April 1, 2013; accepted January 21, 2013.
This research was funded by a National 863 High-Tech Research and

Development Plan of China (No. 2009AA8050701).

speed because of communication delays between PC and
reconfigurable device.
3. Complete hardware evolution (CHE)—The evolving
filter and the EA are both implemented on a single chip.
The primary advantages of this approach are high speed,
low cost and potentially low power consumption in
comparison with a solution which utilises a common PC.
But due to the finite logic resources available on a single
chip, the complexity and number of fitness functions
supported are limited.
Although the PCIHE suffers from high communication

delays, it is useful in applications where the fitness evaluation
time dominates the communication time. Especially, in the
design phase, evolution time may not be a main concern. In
this paper, we proposed a hardware-in-the-loop (HIL)
simulation based evolutionary design method of image filter.
The EA runs in MATLAB/Simulink, while the fitness
evaluation which is the most time consuming part, is
implemented on hardware. Unlike the approach suggested in
[1], the EA runs in MATLAB/Simulink can be synthesized
into hardware directly.

The rest of this paper is organized as follows. Section II
gives a brief introduction to HIL simulation, and then depicts
the architecture, operational mechanism of the proposed
evolvable system in detail. Section III reports the experiments
conducted to verify the validity of our proposed approach and
demonstrate its effectiveness. Section IV concludes with a
brief summary of the features and advantages of the proposed
approach and discusses the future directions.

II. HIL SIMULATION AND EVOLVABLE SYSTEM DESIGN

A. HIL Simulation
Software simulation is a time-consuming work, and due to

the difference between the model and real hardware, the
simulation results depend on the accuracy of the model.

HIL simulation means that the hardware is incorporated in
a simulation loop, which allows a portion to be tested in actual
hardware while the rest part runs in software. HIL simulation
is achieved by System Generator and FPGA platform. System
Generator is a DSP design tool from Xilinx that enables the
use of MATLAB/Simulink for FPGA design. System
Generator provides accelerated simulation through hardware
co-simulation. This hardware will co-simulate with the rest of
the Simulink system to provide up to a 1000 × simulation
speed-up.

Hardware-in-the-Loop Simulation based
Evolutionary Design of Image Filter

Kaifeng Zhang, Huanzhang Lu, Shanzhu Xiao, Weidong Hu
ATR key lab, National University of Defense Technology, Changsha, China

zkf0100007@163.com

http://dx.doi.org/10.5755/j01.eee.20.7.3375

61

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 20, NO. 7, 2014

Fig. 1. Schematic of soft-hardware co-simulation.

As can be seen from Fig. 1, the GateWay In and GateWay
Out module define the boundary for FPGA. The function
blocks between the two modules can be synthesized into
working hardware i.e. FPGA platform. Depending on the
hardware configuration, the communication interface
between FPGA platform and PC can be JTAG (Joint Test
Action Group), PCI or Ethernet interface.

B. Proposed Evolvable System
The proposed evolvable system consists of a

MATLAB/Simulink program running on the host PC and the
virtual reconfigurable circuits implementing on a FPGA
platform.

Fig. 2. Block diagram of evolvable system.

As depicted in Fig. 2, the VRC on FPGA is composed of
three modules: PFE array unit, From/To FIFO unit and
Configuration RAM. The VRC was implemented on Xilinx
ML506 board. The 1 Gbps Ethernet interface is used for data
transmission between PC and FPGA board. The configuration
RAM is implemented by the Unprotected Shared Memory
(USM) and auxiliary control logic. By altering the content of
the USM, the VRC could be reconfigured by the PC at
runtime. When the evolution begins, the image data are
transferred to the FPGA and those data are fed into the input
of the programmable function element (PFE) array unit. The
PC reads the filtered image data from the FPGA, and
calculates the fitness value. The image data transmission can
be realized by Shmem Write/Read API functions provided by
MATLAB. The original image and filtered image are
displayed for comparing the performance of evolving filter.
The evolution process is under the control of the EA unit,
when the stop criteria of the EA satisfied, the expected filter is
obtained.

In this work, the VRC employed is similar to the earlier
model of Wang et al. [11], which is a two-dimensional PFE
array. The VRC is the core component of the evolvable
system, similar to the two-dimensional geometry of Cartesian
Genetic Programming (CGP). The advantage of the
two-dimensional geometry is that the genotype representation
used is independent of the data type of the phenotype, which
brings more flexibility.

As shown in Fig. 3, the PFE array is composed of eight PFE
columns, and each column includes four PFEs except the last

column. The levels back parameter L determines the
connectivity between PFEs. We chose L = 1 here, which
means that the input of each PFE can only be connected to the
output of its previous column. The 2-input, 1-output PFE can
be configured to realize one of eight functions shown in
Table I. The connections between PFEs are implemented by
means of multiplexers that are controlled by configuration
information. In order to achieve pipeline processing, registers
are inserted in the in/output of each PFE.

Fig. 3. PFE array for the evolution of image filter.

TABLE I. FUNCTIONS OF PFES.
Index Function Index Function

0 A 4 MIN(A, B)
1 (A+B)>>1 5 A<<1
2 (A+B+1)>>1 6 A XOR B
3 MAX(A, B) 7 B

Fitness evaluation includes two phase: filter output
response acquisition and fitness calculation. The image
filtering is implemented in hardware, resulting in a significant
speedup over the software implementation. The fitness
calculation can be easily achieved in MATLAB by using
matrix operations. The mean difference per pixel (MDPP) is
employed to measure the quality of the filtered image, which
is defined as follows

2 2

1 1
(,) (,)

,
(2) (2)

R C

i j
v i j w i j

MDPP
R C

(1)

where R and C signify the row and column of the image
respectively, v(i, j) is the pixel value of the original
uncorrupted image , and w(i, j) is the pixel value of the filtered
image.

C. Chromosome Encoding
The chromosome encoding has a significant impact on the

efficiency and the convergence rate of evolutionary
algorithms. In this paper, the VRC configuration information
is relatively simple; a direct coding method was employed.
The structure of chromosome was shown in Fig. 4.

Fig. 4. Structure diagram of chromosome.

The parameters of the VRC are defined as follows: nc = 8,
nr = 4, ni = 9, no = 1, which signify the column number, the
row number, the input number and the output number of the
VRC respectively.

As the levels back parameter L = 1, the chromosome length
is described as follows

62

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 20, NO. 7, 2014

() ()

(2) () .

chrom i n f r r n f

r c r n f o

L n n n n n n n

n n n n n n

 (2)

In (2)， x is the minimum length of the binary string of
x, nf is the length of select bit string of PFE function, nn is the
number of inputs of the PFE. The chromosome length is
(4 × 2 + 3) × 4 + (2 × 2 + 3) × 4 × 6 + (2 × 2 + 3) = 219 bits.
The data structure of the individual Ind can be defined as
follows:

Ind.Chrom[Row][Col]
Ind.Fitness

Here Chrom is the chromosome, Fitness is the individual
fitness value, Row and Col indicate the row and column of the
corresponding PFE respectively.

D. Evolutionary Strategy
In this paper, the EA used in the evolutionary design

process is evolutionary strategy (ES). The genetic operator of
the EA includes selection and mutation, no crossover is
applied.

The hardware evolution basic process is as follows:
Step 1: A set of initial population were randomly generated;
Step 2: Configure the circuit. The configuration information is downloaded
to the configuration RAM;
Step 3: Feed the noisy image data to the FPGA platform, and calculate the
difference between filtered pixel value and the original image to obtain the
fitness value. If the circuit meets the requirements or the specified iteration is
exhausted, then go to step 5, otherwise go to step 4;
Step 4: Evolution operation (including selection, mutation) to create
offspring, go to step 2;
Step 5: Evolution terminated.

III. EXPERIMENTS AND RESULTS

The EA was written in M language provided by MATLAB.
The VRC module is a Black Box in System Generator, which
implemented by hardware description language. The other
module can be realized by predefined function module
provided by System Generator.

Fig. 5. Block diagram of EF3. The functions of PFEs are defined in Table I.

A 256 × 256 Lena image corrupted by Salt & Pepper noise
(5 % pixels with white or black shots) was used for training
our evolved image filter. The employed EA is (1 + λ)
evolutionary strategy, where λ = 4. The stop condition of the
EA is defined as follows: the predefined maximum generation
number is exhausted or the expected solution is obtained
(MDPP below 5 when dealing with Salt & Pepper noise). The
mutation rate is 0.03, and the maximum generation number is
20000.

50 independent runs were performed and one of the
evolved filters is shown in Fig. 5.

The filtering results of evolved filters and median filter
(MF) are shown in Fig. 6.

a) b) c)

d) e) f)
Fig. 6. Filtering results of Lena. (a) Original image. (b) Corrupted image
(Salt & Pepper noise). (c) Restored by MF. (d) Restored by EF1. (e) Restored
by EF2. (f) Restored by EF3.

As seen from Fig. 6, the Salt & Pepper noise was
suppressed by MF, but suffering significant loss in the image
detail. The evolved filters suppressed the Salt & Pepper noise
without obvious detail loss. Besides the filtering performance,
the logic resource utilization is also an important measure for
the hardware implementation of image filter. The filters were
synthesized using Xilinx ISE 10.1 and mapped to a
XC5VSX50T FPGA. Table II shows the logic utilization,
MDPP and convergence generations of filters.

TABLE II. PERFORMANCE COMPARISON OF FILTERS.

Filters MDPP Logic utilization
(Slice)

Convergence
generations

MF 3.496 256 —
EF1 2.050 51 15732
EF2 3.693 96 10301
EF3 1.903 58 15667

As seen from Table II, EF1 and EF3 outperform the MF in
terms of MDPP and logic utilization.

a) b) c)

d) e) f)
Fig. 7. Filtering results of Cameraman. (a) Original image. (b) Corrupted
image (Salt & Pepper noise). (c) Restored by MF (MDPP=4.383). (d)
Restored by EF1 (MDPP=2.449). (e) Restored by EF2 (MDPP=4.512). (f)
Restored by EF3 (MDPP=2.351).

In order to verify the generalization of the evolved filters,
the evolved filters trained by Lena image were used to restore
Cameraman image corrupted by Salt & Pepper noise.

The evolved filters are usually general, which are

63

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 20, NO. 7, 2014

demonstrated in Fig. 7. The evolved filters also outperform
the MF in terms of MDPP.

To make an equal comparison with existing methods, a
Lena image corrupted by Gaussian (mean 0 and variance
0.008) is also employed to train our evolved filters. In the case
of Gaussian noise, we chose MDPP below 10 as the stop
criteria. Table III summarized the performance comparison of
the existing evolutionary design method of image filter.

TABLE III. PERFORMANCE COMPARISON OF EVOLUTIONARY
DESIGN METHOD OF IMAGE FILTER.

Evolutionary
design method

Noise type/
FPGA clock

frequency (MHz)
MDPP Time

cost (s)

Logic
utilization

(slice)
CHE [11] Salt & Pepper/33 1.86 128 71
CHE [11] Gaussian/33 8.39 128 85

PCIHE [10] Gaussian/
Asynchronous 17.5 5100 97

Proposed Salt & Pepper/100 1.903 247 58
Proposed Gaussian/100 9.035 282 82

The PCIHE suffers from the lowest running speed, due to
the asynchronous feature that no pipeline processing could be
employed. As seen from Table III, the CHE outperforms our
proposed method in terms of filtering performance, but
occupying more logic area. By comparison with the evolution
speed, the proposed method is slower than the CHE, but
outperforms the PCIHE significantly.

It takes about 8.3 ms to make a median filtering operation
for a 256 × 256 image using MATLAB (R2007b) on an Intel
DualCore E6600 (2.4 GHz) with 2 GB DDR II RAM. For the
HIL simulation, FPGA operating clock is 100 MHz, and the
theoretical time for processing a 256 × 256 image is 256 ×
256 × 10 ns ≈ 0.66 ms, a speedup of approximately 12.5 × can
be achieved. The total evolution time cost t can be defined as
follows

(()),init cfg filter tran EAt t N M t t t t (3)

where tinit is the system initialization time, N is the number of
generations, M is the population size, tcfg is the configuration
time of VRC, tfilter is the filtering time, ttran is the data
transmission time between PC and FPGA, and tEA is the time
required to run EA. Table IV summarized the time cost for
evolution in detail.

TABLE IV. TIME COST FOR EVOLUTION.
tinit tcfg tfilter ttran tEA

32 s 0.024 ms 0.66 ms 2.16 ms 1.32 ms

As shown in Table IV, tinit takes the most time, while the
system initialization only runs once at the beginning. The data
transmission time ttran also takes much time. It is worth
pointing out that the filtering operation in our work is
relatively simple, and the data processing time is much less
than the data transmission time. In the case of more complex
computing algorithm employed, much more advantage of
hardware acceleration could be obtained.

TABLE V. SYNTHESIS RESULTS IN XC5VSX50T FPGA.

Resource Available
Used for

evolvable system
Used for EA

slices 8160 3019 (37 %) 1061 (13 %)
flip flops 32640 7507 (23 %) 2285 (7 %)

LUTs 32640 5875 (18 %) 1632 (5 %)

The EA is implemented using MCode which is a limited
subset of the M language. As a result, the EA can be
synthesized into hardware directly together with the VRC and
other auxiliary logic modules. The synthesis results are as
shown in Table V. According to the synthesis reports, the
maximum FPGA clock frequency attained is 135.41 MHz.

IV. CONCLUSIONS

A HIL simulation based evolutionary design method of
image filter is proposed. The experimental results show that it
can effectively improve the evolution speed of traditional
PCIHE. And the optimal evolved filters have better filtering
performance and lower implementation cost than existing
methods. Furthermore, in contrast to CHE, by taking
advantage of MATLAB, our method has more powerful
computing capability and flexibility.

In addition, this paper only studied the evolutionary design
of static fitness function. However, the proposed method also
can be used for dynamic adaptive fitness function, such as
hardware online adaptive filtering. The online adaptation is a
challenging issue in evolvable hardware research areas, which
is also the focus of future research work.

REFERENCES
[1] L. Sekanina, V. Drabek, “Automatic design of image operators using

evolvable hardware”, in Proc. 5th IEEE Design and Diagnostics of
Electronic Circuits and Systems, Czech Republic, 2002, pp. 132–139.

[2] A. Thompson, P. Layzell, R. S. Zebulum, “Explorations in design
space: unconventional electronics design through artificial evolution”,
IEEE Trans. Evolutionary Computation, vol. 3, pp. 167–196, 1999.
[Online]. Available: http://dx.doi.org/10.1109/4235.788489

[3] J. Q. Xu, Y. Dou, Q. Lv, “A bio-inspired fault-tolerant hardware
system supporting hierarchical self-healing”, Elektronika Ir
Elektrotechnika, vol. 4, pp. 103–106, 2012.

[4] E. Stomeo, T. Kalganova, C. Lambert, “Generalized disjunction
decomposition for evolvable hardware”, IEEE Trans. Systems, Man,
and Cybernetics, vol. 36, pp. 1024–1043, 2006. [Online]. Available:
http://dx.doi.org/10.1109/TSMCB.2006.872259

[5] P. Kaufmann, K. Glette, T. Gruber, M. Platzner, J. Torresen, B. Sick,
“Classification of electromyographic signals: comparing evolvable
hardware to conventional classifiers”, IEEE Trans. Evolutionary
Computation, vol. 17, pp. 46–63, 2013. [Online]. Available:
http://dx.doi.org/10.1109/TEVC.2012.2185845

[6] F. Canare, S. Bhadari, D. B. Bartolini, M. Carminati, M. D.
Santambrogio, “A bird’s eye view of FPGA-based evolvable hardware”,
2011 NASA/ESA Conf. on Adaptive Hardware and Systems, USA,
2011, pp. 169–175. [Online]. Available: http://dx.doi.org/10.1109/
AHS.2011.5963932

[7] R. A. Ashraf, R. F. DeMara, “Scalable FPGA refurbishment using
netlist-driven evolutionary algorithms”, IEEE Trans. Computers, vol.
62, pp. 1526–1541, 2013. [Online]. Available: http://dx.doi.org/
10.1109/TC.2013.58

[8] Z. Vasicek, M. Bidlo, L. Sekanina, K. Glette, “Evolutionary design of
efficient and robust switching image filters”, 2011 NASA/ESA Conf. on
Adaptive Hardware and Systems, USA, 2011, pp. 192–199. [Online].
Available: http://dx.doi.org/10.1109/AHS.2011.5963935

[9] Z. Vasicek, L. Sekanina, “An evolvable hardware system in Xilinx
Virtex II Pro FPGA”, Int. J. Innovative Computing and Applications,
vol. 1, pp. 63–73, 2007. [Online]. Available: http://dx.doi.org/
10.1504/IJICA.2007.013402

[10] Y. Zhang, S. Smith, A. M. Tyrrell, “Digital circuit design using
intrinsic evolvable hardware”, 2004 NASA/DoD Conf. on Evolvable
Hardware, USA, 2004, pp. 24–26.

[11] J. Wang, Q. S. Chen, C. H. Lee, “Design and implementation of a
virtual reconfigurable architecture for different applications of
intrinsic evolvable hardware”, IET Computers & Digital
Techniques, vol. 2, pp. 386–400, 2008. [Online]. Available:
http://dx.doi.org/10.1049/iet-cdt:20070124

[12] P. C. Haddow, A. M. Tyrrell, “Challenges of evolvable hardware: past,
present and the path to a promising future”, Genetic Programming
Evolvable Machines, vol. 12, pp. 183–215, 2011. [Online]. Available:
http://dx.doi.org/10.1007/s10710-011-9141-6

64

