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Abstract—Maximum power point tracking technique for PV 

panels with support of online learning artificial neural network 

is offered. Mathematical model of the system is implemented in 

Matlab/Simulink environment. Maximum power point tracking 

is performed using IncCond algorithm and radial basis function 

artificial neural network. Several criteria for estimation of 

system performance were derived. It is shown that ANN can 

increase overall system efficiency by 10%.  

 
Index Terms— Photovoltaic cells, artificial neural networks, 

adaptive algorithm, sensitivity.  

I. INTRODUCTION 

Maximum power point tracking (MPPT) enables to 

increase efficiency of electricity production of photovoltaic 

(PV) module [1]. To reach the maximum instantaneous 

power the controller must adjust the load of PV module 

according MPPT algorithm depending on varying cloudiness 

and temperature of the module. The controller must quickly 

respond to the mentioned and similar factors, and to assess 

their impact on the solar module, and adjust battery charging 

modes. The power generated by PV module depends on 

speed and accuracy of load matching. 

Tracking of maximum power point (MPP) is provided by 

electronic system used to exploit maximum power from PV 

modules, which these modules are capable to produce. 

Controller with MPPT algorithm follows the maximum 

voltage and current intersection point of the module and 

guarantees the highest received power [2]. 

When solar energy flux (SEF) is changing rapidly, most of 

the controllers fail to keep tracking the MPP. This reduces 

the efficiency of PV module. This problem can be solved 

using artificial neural networks (ANN) [3], [4], which in 

case of rapid change in SEF, predict the current situation of 

MPP and determines the necessary system parameters. 

This paper presents analysis of IncCond MPPT algorithm 

and comparison of operation with and without ANN. 

Mathematical models used for simulation are described in 

[5]. 
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II. MAXIMUM POWER POINT 

In Fig. 1 current-voltage characteristics of the solar 

module at different SEF and module temperatures are 

shown. In each curve an intersection point of maximum 

current  
m ax

I  and voltage 
m ax

U  can be found at witch solar 

module generates the maximum power
m ax m ax m axP U I  . 

The current-voltage characteristic is unique for each set of 

SEF and temperature values, so as the 
m axI  and 

m ax
U . 

 
Fig. 1.  MPP at different SEF and temperatures. 

Maximum power Pmax is reached when the solar module is 

loaded by a characteristic resistance 
mR  (Hussein K. et. al. 

1995), which is calculated as follows 

m ax

m ax

.
l m

U
R R

I
   (1) 

So, the solar module generates a maximum power only 

when the load resistance is equal to the characteristic 

resistance of the module l mR R . This point correspond the 

current and voltage intersection in voltage-current 

characteristic and is called the maximum power point. Solar 

module characteristic resistance 
mR  is not fixed – it 

depends on the type of solar module, its temperature, SEF 

and even the life-time of the module [6], [7]. There is no 

possibility to calculate 
m

R  from parameters of PV module. 

Because of that different convergence algorithms are used, 

which control the size of the load resistance 
l

R , while 

monitoring voltage and current at output of the PV module 

in order to keep load resistance closer to the instantaneous 

value 
m

R – follows the maximum power point. 
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One of the most popular MPPT algorithms is Perturb and 

Observe (P&O) [2]. This algorithm perturbs Rl in each 

operating cycle, and observes the variation of PV modules 

output power. According to the results Rl is perturbed again. 

This means that even at the MPP the system will not remain 

in it, and change Rl around 
mR . For this reason power is lost 

and the output of PV module is not stable. 

The Incremental Conductance algorithm (IncCond) is 

analysed in the paper. The algorithm is based on simple 

mathematical expressions, and it avoids most of the P&O 

drawbacks [6]. 

III. INCCOND ALGORITHM 

According the algorithm, PV modules output power 

derivative with respect to voltage dP/dU is calculated 

(Figure 2). The result describes the position of systems 

operation point in the power characteristic in relation with 

MPP. 

Power derivative can be expressed in terms of voltage and 

current 

( )
.

d P d IU d I
I U

d U d U d U
    (2) 

This allows to calculate the derivative in voltage-current 

characteristics and to determine the direction of change in 

load resistance. According to (2) the load resistance change 

can be described by these conditions: 
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where ΔR  – step of load resistance change. 

The model uses time step of 1 second, so derivatives 

defined in (2) are calculated approximately [7] 

,
d I I

d U U



 


 (4) 

where ΔI and ΔU current and voltage change in 1 s, t – time 

in seconds and  – marginal error. 

Marginal   is necessary because /I U   does not 

exactly correspond to actual derivative.  

Allowing small marginal error   stabilizes the algorithm. 

According to (2), (3) and (4) the load resistance is 

changed as follows:  
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Mathematical algorithm corresponding to (5) is used for 

MPPT analysis and implemented in Matlab / Simulink 

environment and used with the SEF and PV module 

mathematical models described in this paper [8]. 

 
Fig. 2.  MPP tracking with IncCond algorithm. 

IV. VERIFICATION OF THE MODEL 

To analyse the operation of mathematical model and 

MPPT algorithm it is necessary to define numerical criteria, 

which define the performance of MPPT. These criteria will 

be used to compare various modes of operation of IncCond 

algorithm and evaluation of ANN effect on system 

performance. 

In Fig. 2 it is shown, that power dependency on voltage is 

not linear. So according to (1) can be concluded that dP(Rl-

)/dRl  is not linear function also. For this reason, it is not 

enough to evaluate Rl error of the algorithm. At this stage, it 

is also important to determine the optimal load changing 

step ΔR . 

For this purpose Simulink model is formed implementing 

the following expression 

( , ) ( , )
,

l T l T

l

d P R E P R E

d R R





 (5) 

where ET – total SEF falling the surface of PV module. 

According to (6), system sensitivity diagram at different 

load resistance and SEF values is calculated (Fig. 3). The 

black curve denotes the case when 

( , )
0 .

l T

l

d P R E

d R
  (6) 

This curve is obtained by modelling the system with very 

small load resistance step ΔR values. In Fig. 3 the black 

curve describes the dependence of characteristic resistance 

mR on SEF. So, it can be regarded as reference curve Rme 

(ET). 

According to Fig. 3 the system sensitivity to the resistance 

step change is highly dependent on the SEF values incident 

upon the PV module surface at low SEF values, 

characteristic load resistance Rm increases exponentially. A 

small change in resistance ΔR has a small influence on the 

system output power change ΔP . When SEF values are high 

Rm decreases significantly and equals to 4.2 Ω. In this scope 

of SEF values the influence of ΔR   on the output power is 

much greater. So the following conclusions can be formed: 
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1) Because SEF is not stable, matching of the third 

condition in (5) is unlikely. Therefore, the system 

operation mode is always a little distant from the MPP; 

2) To increase PV modules efficiency, load resistance 

change step ΔR  must be minimized at high values of 

SEF; 

3) At low SEF values, system sensitivity is low and the 

small step ΔR  leads to slow approach to MPP and 

large energy losses; 

4) Energy losses can be reduced throughout the range 

of SEF by selecting the optimum load resistance change 

step Δ
o p t

R .  

 
Fig. 3.  Sensitivity diagram of the system. 

Using the reference dependence Rme (ET) and the 

mathematical model of the PV module it is possible to 

determine the dependence of Pe(ET). Power deviation errors 

can be derived:  

( ) ( ) ( )
P e T

t P E P t   ,  (8) 

2

1

( )

t

P P

t
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where ( )
P

t – momentary output power P deviation from 

the reference value, 
P




 – electrical energy lost during 

selected time interval, 
P

 – average deviation of power 

during selected time interval. 

Criteria
P




, P  are useful in different MPP tracking 

modes for comparison. They have several disadvantages: 

they are dependent on the law of variation of SEF (SEF 

waveform) and highest value of SEF obtained while 

measurements.  

V. MPP TRACKING PERFORMANCE ANALYSIS 

To compare the performance of IncCond algorithm 

operating independently and with support of neural network, 

MATLAB/Simulink block for IncCond MPPT was created, 

compatible with solar power plant model described in [8]. 

Structure diagram of full model is presented in Fig. 4. 

To test the operation of IncCond algorithm, ANN block is 

disconnected and a day with small rapidly moving clouds is 

simulated (Fig. 5). It is found experimentally, that for system 

to remain in MPP when E=1000 W/m
2
 load change step 

must be Δ 0.3ΩR  . In Fig. 4 it can be seen, that system 

can’t adapt to rapidly changing weather conditions fast 

enough and it often operates far from MPP. During 

simulations a weak point of the algorithm was found – if 

voltage and current change faster because of weather 

conditions than because of change in load, the second 

condition in (5) is evaluated incorrectly and load is increased 

instead of decreasing, especially when SEF is low. 

Sometimes this leads to outcome, that system constantly 

increases load to the point, from which it can’t go back to 

normal operation. Repeatedly performing simulation the 

average efficiency of the system is calculated to be 89% in 

similar weather conditions. 

PV 
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SEF
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Fig. 4.  Structure diagram of MPPT tracker with ANN. 

MPPT system is improved by introducing an ANN into 

control sequence. ANN`s are ideally suited for rapid 

approximation of various nonlinear functions. Also online 

learning abilities allow constant adoption to a specified 

system. 

According to the Fig. 5 ANN provides guess value or Rl 

only when SEF changes rapidly. All the other time IncCond 

algorithm operates as usual. When system is at MPP, 

learning samples are provided for ANN, so online learning is 

possible. For implementation of ANN it was decided to 

radial basis function (RBF) neural network, because this 

type of ANN is already implemented in hardware [9]. 

 
Fig. 5.  SEF E reaching the PV module, load resistance Rl and the 

difference between maximum power and actual power ( )P t  during the 

cloudy day (independent IncCond MPPT operation). 

Results of simulation of IncCond algorithm with ANN 

support are presented in Fig. 6. It is seen, that at the 

beginning of the simulation guess errors of Rl are high. 

During the time ANN is learning and errors are decreasing 

and closing to zero. High power deviation ( )
P

t  is available 

Maximum power curve 
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during the first half of the day are present. But after noon, 

when SEF values start to decrease and ANN is already 

learned these, ( )P t becomes very close to zero.  

 
Fig. 6.  SEF E reaching the PV module, load resistance Rl, the power 

deviation ( )
P

t  and the ANN guess error ( )P t  during the cloudy day 

(IncCond with ANN MPPT operation). 

Repeating simulation many times showed, that average 

efficiency of system during the first day is 93% and during 

each following day ~ 99%.  

VI. CONCLUSIONS 

To test the performance of MPPT, reference dependency 

Rl(ET) was derived and criteria 
R

  and 
R

  were defined.  

Simulation of independent operation of IncCond 

algorithm revealed, that rapidly changing environmental 

conditions and low SEF can cause system instability and 

malfunction. Average efficiency of MPPT at such conditions 

is 89% 

It is shown, that trained ANN allows usage of 

small ΔR steps so avoiding oscillation of output power at 

high SEF values without losing the ability of fast MPPT at 

low SEF values  

ANN significantly reduces power output deviation 

( )P t .and increases the responsiveness and stability of 

MPPT. Using learned ANN the efficiency of MPPT can be 

as high as 99%.  
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