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1Abstract—An exact closed form solution for the calculation
of lightning-induced voltages on overhead lines has been
recently proposed by A. Andreotti et al. (2012). Predictions of
this exact formulation are compared here to those based on
approximate analytical solutions proposed in the literature.

Index Terms—Lightning, single conductor line, induced
voltage, analytical solution.

I. INTRODUCTION

Distribution lines are very sensitive to nearby lightning
strike events, and this can cause power quality problems. For
this reason, a study on lightning-induced voltages shall be
carried out.

In recent years, remarkable progress has been made in the
studying lightning effects. Numerical approaches (e.g., [1]–
[7]) allow very good modeling of the problem. Return-stroke
current waveshape, influence of ground conductivity, surge
arresters and other non-linearities can be taken into account.
On the other hand, analytical solutions (e.g., [8]–[16]) are
also very important in dealing with the design of the line.
Furthermore, many computer codes use analytical solutions
for the evaluation of lightning induced effects [17]. Finally,
analytical solutions are not affected by instability problems
[18].

A typical configuration that can be found in the
calculation of lightning induced voltages is represented by a
lossless, single conductor line, located over a perfectly-
conducting ground and illuminated by a lightning field
produced by a linearly-rising current which propagates
according to the Transmission Line model [19], [20]. The
configuration is shown in Fig. 1.

Approximate analytical solutions to this problem have
been proposed by Chowdhuri and Gross [21], [22], Liew and
Mar [23], Sekioka [24], and Hoidalen [10]. Andreotti et al.
were able to find the exact solution [25]. In this paper, this
exact solution will be compared to those proposed by other
authors. The paper is organized as follows: in Section II, a
survey of the solutions presented by other authors is carried
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out; in Section III, the Andreotti et al.’s solution is briefly
reviewed; in Section IV, this solution is compared to the
other solutions, and, finally, conclusions are drawn in
Section V.

II. A SURVEY OF CLOSED-FORM SOLUTIONS

A. Chowdhuri-Gross Formula
Chowdhuri and Gross proposed a solution for a linearly-

rising current of constant slope 0 / fI t  , where 0I and

ft are, respectively, the peak value and the front time of the

lightning current. This solution, obtained starting with a
coupling model developed by the authors themselves [26],
was first published in [21].

The solution was modified in [22] on the basis of the
suggestions given by Cornfield [27]. We consider here the
final expression specified for x = 0
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Fig. 1. A typical configuration for lightning-induced voltage calculations.
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Symbols’ meaning can be found in [22]. Formula (1)
refers to the rising part of the lightning current, it is therefore
necessary to add an additional contribution to complete the
overall current waveshape, which corresponds to its post-
peak part (constant-level or drooping tail). As shown in
Fig. 2, where tt denotes the tail time of the lightning
current, in the case of constant-level tail, this contribution
consists of a time-delayed ramp of negative slope and the
same magnitude as the positive ramp. For a drooping tail the
second contribution has to be evaluated as explained in [25].

In summary, in the case of constant-level tail, the second
contribution denoted by (0, )v t is given by

(0, ) (0, ),fv t v t t    (2)

while for the drooping tail (0, )v t can be obtained as

*
(0, ) (0, ).fv t v t t


     (3)

B. Liew-Mar Formula
The formula proposed by Liew and Mar was originally

published in [23] and then revised in the discussion of [22].
In fact, the original formula had several typographical errors.
The formula, specified for x = 0, reads
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a)

b)
Fig. 2. Current waveshapes: ramp with constant or drooping tails.

Symbols’ meaning can be found in [22]. In this case too,
(4) refers to the first part of the current. Another term must
be considered, as done in the previous subsection.

C. Sekioka Formula
The formula proposed by Sekioka [24] was derived by

using the so-called Rusck’s coupling model [9], [12]. The
formula, for x = 0, reads
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Symbols’ meaning can be found in [24]. As before, this
formula gives only the contribution of the initial portion of
the lightning current.

D. Hoidalen Formula
Hoidalen [10] proposed an approximate formula which

allows one to evaluate the induced voltage along the line.
This solution has been obtained by a numerical convolution
of Rusck expression for the step current case.

As the solutions presented above, the Hoidalen solution is
the sum of the two contributions, which account for both the
rising part and the tail of the current. At x = 0, it reads
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In this case, symbols’ meaning can be found in [10]. Note
that the expression given in [10] refers to a finite length line.
It can be easily extended to the case of an infinite length
line.

III. ANDREOTTI ET AL. FORMULA

We will briefly review the formula proposed by Andreotti
et al. [25] for the evaluation of the induced voltage at x = 0
in the case of a linearly-rising current (see Fig. 1).

This expression has been derived starting from the
rigorous analytical solution presented by Andreotti at et al.
for a step current [12] by using the Duhamel’s integral. For a
linearly-rising current of constant slope 0 / fI t  , the

resulting expression is (see [25] for details)

1 2(0, ) (0, ) (0, ),v t v t v t  (8)
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(9)

where 0 is the permeability of free space,  is the ratio of
the return stroke speed to c (the speed of light in free space),
t is the time ( 0t  , return stroke inception), ct h   ,

0 0ct h   , /d  , 0 0 /t r c , h is the line
conductor height above ground, d is the horizontal distance
between the lightning channel and the line conductor,

21/ 1   , 2 2
0r d h  , and ( )u  is the Heaviside

function. The expression of 2 (0, )v t can be derived from

1(0, )v t by changing the sign of h.
Equations (8), (9) give the exact closed form expression

for the linearly-rising portion of the lightning current. An
additional contribution has to be added to obtain the voltage
induced by the overall current waveshape, as done for
previous models.

IV. COMPARISON OF THE EXACT CLOSED-FORM SOLUTION
WITH OTHER SOLUTIONS PRESENTED IN LITERATURE

In this section, solution (8) will be compared to the other
analytical solutions described in Section II.

For comparison purposes, we will assume a current at the
base of the channel with a maximum value 0I = 12 kA, a

front time ft = 0.5 μs and a drooping tail with tt = 20 μs.

This specific channel-base current was selected since it
represents the best fit to a typical measured channel base
current [10].

A. Chowdhuri-Gross Formula
In this paragraph, we will compare the induced voltage

waveform obtained by using the Chowdhuri-Gross formula
(1) with the one obtained by using our exact solution (8). In
Fig. 3, the comparison is shown for a 10-meter height line
placed at a distance d = 50 m away from the lightning
channel; results have been obtained for the following values
of the parameters, 0I = 12 kA,  = 0.4, ft = 0.5 μs and

tt = 20 μs. The same comparison, but with d = 100 meters,
is shown in Fig. 4. We point out that, since the expression
proposed by Chowdhuri-Gross is given for a lightning
channel of finite length ( ch ), for comparison purposes we
have assumed, for both graphs, ch → ∞ in (1). Furthermore,
for the purpose of completeness, we have also considered a

finite length channel having ch = 3 km (see Fig. 5 and
Fig. 6). The comparison clearly shows that the Chowdhuri-
Gross’s formula, similar to the case of step current analysed
in [12], cannot be considered correct. We notice a polarity
inversion, more pronounced when ch is finite, which cannot
be justified for the voltage induced by a linearly-rising
current waveform with drooping tail in case of lossless
ground.

B. Liew-Mar Formula
Now, we will compare results obtained by using our

solution (8) and their counterparts obtained by using the
Liew-Mar formula (4). In Fig. 7, the results obtained for h
= 10 m, d = 50 m, 0I = 12 kA,  = 0.4, ft = 0.5 μs and

tt = 20 μs are shown. In Fig. 8, the same comparison is
shown, but for d = 100 m.

Fig. 3. Comparison between the voltage evaluated at x = 0 by means of
Chowdhuri–Gross’s and Andreotti et al.’s formulas (h = 10 m, d = 50 m, I0
= 12 kA, β = 0.4, tf = 0.5 μs, tt = 20 μs, hc = ∞).
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Fig. 4. Same as Fig. 3, but for d = 100 m.

As for the Chowdhuri-Gross’s formula, the Liew-Mar
solution also considers a finite channel length: for
comparison we have assumed ch → ∞ in (4) for both
graphs. To check the effects of a finite length channel, we
have also considered the case ch = 3 km (see Fig. 9 and
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Fig. 10). As one can see from the comparison, the Liew-Mar
formula predicts a lower peak value for d = 50 m, and a
higher peak value for d = 100 m. In both cases, results
obtained using (4) show a steeper front, a too rapid decay of
the current tail, and a polarity inversion. The latter effect is
seen both for finite and infinite lengths of the lightning
channel.
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Fig. 5. Comparison between the voltage evaluated at x = 0 by means of
Chowdhuri–Gross’s and Andreotti et al.’s formulas (h = 10 m, d = 50 m, I0
= 12 kA, β = 0.4, tf = 0.5 μs, tt = 20 μs, hc = 3 km).
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Fig. 6. Same as Fig. 5, but for d = 100 m.

We conclude that the Liew-Mar solution cannot be
considered correct.

C. Sekioka Formula
By comparing the results obtained using solution (8) and

their counterparts obtained by means of the Sekioka formula
(5), calculated for the same values of parameters proposed in
the previous paragraphs ( h = 10 m, d = 50, 100 m, 0I =

12 kA,  = 0.4, ft = 0.5 μs and tt = 20 μs), one can

observe that the results are practically the same
(overlapped). Some minor differences can be spotted by
zooming in the graphs, as shown in Fig. 11 for the case of
d = 50 m.

We can therefore conclude that the Sekioka’s formula is
consistent with the exact solution and can be considered a
useful tool for the analysis of power distribution lines, for

which the height is relatively small. For higher lines, such as
transmission lines, small differences between predictions of
(8) and (5) can be detected. However, the Sekioka formula
can still be considered a suitable tool for this kind of lines.
In Fig. 12, a 30-meter height line is considered.
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Fig. 7. Comparison between the induced voltage evaluated at x = 0 by
means of Liew-Mar’s and Andreotti et al.’s formulas (h = 10 m, d = 50 m,
I0 = 12 kA, β = 0.4, tf = 0.5 μs, tt = 20 μs, hc = ∞).
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Fig. 8. Same as Fig. 7, but for d = 100 m.
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Fig. 9. Comparison between the induced voltage evaluated at x = 0 by
means of Liew-Mar’s and Andreotti et al.’s formulas (h = 10 m, d = 50 m,
I0 = 12 kA, β = 0.4, tf = 0.5 μs, tt = 20 μs, hc = 3 km).
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Fig. 10. Same as Fig. 9, but for d = 100 m.

Fig. 11. Comparison between the voltage evaluated at x = 0 by means of
Sekioka’s and Andreotti et al.’s formulas (h = 10 m, d = 50 m, I0 = 12 kA,
β = 0.4, tf = 0.5 μs, tt = 20 μs): magnification of the 0.6÷1.1 μs time
interval.

Fig. 12. Comparison between the voltage evaluated at x = 0 by means of
Sekioka’s and Andreotti et al.’s formulas (h = 30 m, d = 50 m, I0 = 12 kA,
β = 0.4, tf = 0.5 μs, tt = 20 μs).

D. Hoidalen Formula
A comparison between (8) and Hoidalen formula (6) is

shown in Fig. 13 and Fig. 14, where a 10 m and a 30 m lines
have been considered, respectively. As in the case of
Sekioka’s expression, practically no differences are

observed for a 10 m line (the graph was zoomed in to show
some minor differences), whereas for the 30-m line, even if
differences can be seen, Hoidalen’s formula can still be
considered a suitable approximation of the exact solution.
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Fig. 13. Comparison between the voltage evaluated at x = 0 by means of
Hoidalen’s and Andreotti et al.’s formulas (h = 10 m, d = 50 m, I0 = 12 kA,
β = 0.4, tf = 0.5 μs, tt = 20 μs): magnification of the 0.6÷1.1 μs time
interval.
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Fig. 14. Comparison between the voltage evaluated at x = 0 by means of
Hoidalen’s and Andreotti et al.’s formulas (h = 30 m, d = 50 m, I0 = 12 kA,
β = 0.4, tf = 0.5 μs, tt = 20 μs).

V. CONCLUSIONS

In this work, the rigorous analytical solution presented by
Andreotti et al. [25] for the calculation of voltages induced
on an overhead conductor located above a perfectly-
conducting ground by a linearly-rising lightning current
waveform has been reviewed and predictions of this
formulation have been compared to those given by other
analytical (approximate) solutions proposed in the literature.

The comparison shows that both the Chowdhuri-Gross
and the Liew-Mar formulas predict results which are in
disagreement with the Andreotti et al. solution. In particular,
they predict incorrect peak values, steeper fronts, too rapid
decays of the current tail, and physically unexplainable
polarity inversions. Hence, they cannot be considered
correct. Conversely, both the Sekioka solution and the
Hoidalen’s formula are consistent with the exact analytical
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solution, and can be considered suitable for lightning
induced overvoltage analysis of distribution lines, i.e., lines
with relatively small height. For such lines, differences
between Andreotti et al.’s formula and both the Sekioka and
the Hoidalen’s expressions are within the 0.6 %.
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