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Abstract—In this paper, a novel method for joint channel 

estimation and equalization based on fractional Fourier 

transform is presented for block faded MIMO systems. The 

channel response is obtained at the receiver by sending known 

training symbols along with the data. The channel state 

information (CSI) obtained from the received training symbols 

is used for equalization. Therefore, the equalization process 

depends on the quality of channel estimation. The proposed 

technique performs the channel estimation and equalization in 

the optimum fractional domain outperforming the conventional 

time domain estimation and equalization technique. For a 2x2 

MIMO system the proposed fractional domain technique gives 

SNR advantage of 1.67 dB over the existing technique.  

 
Index Terms— Channel estimation, equalization, FRFT, 

MIMO.  

I. INTRODUCTION 

Over the last decade, the popularity of wireless 

applications has risen tremendously, and there is an ever 

increasing demand for higher data rates. Multiple-input 

multiple-output (MIMO) systems have recently emerged as 

one of the significant technical breakthroughs in modern 

communication because of its ability to provide high spectral 

efficiency without the need of additional bandwidth [1]. 

However, MIMO system relies upon the knowledge of the 

channel response at the receiver for data detection and 

decoding. In practice, however, the channel state 

information (CSI) is never known to the receiver apriori and 

some form of channel estimation technique has to be used to 

estimate the channel response [2], [3]. A simple way to 

estimate the channel is to transmit known training symbols to 

the receiver. The two common methods used for training 

based channel estimation are least squares (LS) and 

minimum mean square (MMSE) estimation. The channel 

response estimate obtained by channel estimation is used for 

equalization. In this paper, the MMSE receiver is considered 

for equalization as it is the optimum linear receiver [4]. 

Since, equalization process involves the CSI, it can be 

understood that the output  depends on the quality of channel 

estimation. In [5], an improved MMSE receiver based on 

fractional Fourier transform was proposed. It was shown that 
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the performance of MMSE receiver can be improved by 

performing the equalization in the fractional domain. In this 

improved MMSE receiver, the channel response was 

assumed to be perfectly known to the receiver, which is not 

practical. In this paper, we propose a novel joint channel 

estimation and equalization technique where the channel 

estimation and equalization is performed in the optimum 

fractional domain rather than the conventional time domain. 

II. SYSTEM MODEL 

In this article, it is assumed that the channel remains 

constant within one transmission block and changes 

completely and independently for the next block and then 

remains constant for the duration of that block. Most of the 

analysis of MIMO receivers in literature assumes that the 

channel is perfectly known at the receiver. This assumption 

is not valid in practice and a reasonable estimate of the 

channel response needs to be obtained at the receiver for 

exploiting MIMO systems. In the case of a block fading 

channel, the estimation is done by transmitting a training 

sequence at the start of the transmission block. The channel 

response estimated by the training sequence is valid for the 

entire length of the transmission block and a new estimate 

needs to be obtained after that.  

We consider a MIMO system with Nt transmit antennas 

and Nr receive antennas, where Nt ≤ Nr. Within one block of 

L symbols, the MIMO model is 

Y = H X + N

t

ρ

N
, (1) 

where   denotes the signal-to-noise ratio (SNR) for a single 

receive antenna. LDPC codes of rate 1/2 are used for the 

forward error correction (FEC) of the received data bits. 

LDPC codes have been selected as the channel coding 

scheme because they achieve better performance than other 

block codes for various fading channels [6], [7]. The coded 

bits are modulated using QPSK. 

III. CHANNEL ESTIMATION AND EQUALIZATION 

The MIMO technology promises to meet the data rate 

demands of the future generation without needing additional 
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bandwidth. Although the prospects of MIMO systems look 

bright but the predictions have been made on the assumption 

that channel is perfectly known at the receiver. Practically, 

this is never the case and some kind of estimation needs to 

be performed at the receiver to obtain the channel estimate. 

Estimation can be done by using training sequences or by 

using blind estimation methods which do not use any kind of 

training. Although the blind estimation methods do not 

impose any bandwidth penalty on the system, their 

performance is inferior to the techniques that use pilot 

symbols. In this paper, only the training based channel 

estimation techniques are considered. For a block fading 

channel, the channel is estimated only once within one 

block. The training symbols are transmitted at the beginning 

of the block followed by the information (data) symbols. The 

transmit symbol matrix X can be decomposed into X=XT+Xd 

and the receive symbol matrix into Y=YT+Yd where XT,YT 

and Xd,Yd are the training symbols and data symbols 

respectively. The data symbols Xd are encoded using the 

LDPC parity check matrix for FEC at the receiver. The 

block length L can be further decomposed into L=LT+Ld, 

where LT is the length of training symbols in a block and Ld 

is the length of data symbols in a block. 

Let us consider normalized matrix 
T

X which contains the 

training symbols only. The optimum training symbol design 

is based on the orthogonality condition, where the training 

symbols have to be orthogonal to each other in time and 

space. The orthogonality condition is given by 

.
T

H

T T L
c o n s tX X I , (2) 

where const denotes an arbitrary, real, non zero factor. The 

orthogonality condition minimizes the variance of estimation 

error.  

Once the training symbols are received at the receiver, the 

channel state information can be extracted from them in 

various methods. Two common techniques used for 

obtaining channel estimates are LS and MMSE: 

1ˆ ( )
H H

L S T T T T



H X X X Y , (3) 

2 1ˆ ( )
t

H H

M M S E T T n T TN




 H X X I X Y , (4) 

where ˆ
L S

H  is the least squares estimate and ˆ
M M S E

H  are the 

channel estimates obtained by MMSE method. After 

estimation the channel matrix can be decomposed into 

ˆ=H H + H . (5) 

After the channel estimate Ĥ  is obtained, it is used for 

equalization. In this paper, the equalization is performed 

using MMSE receiver which is considered to be the 

optimum linear receiver because of its good performance at 

low and high SNR [4]. The MMSE receiver tries to 

minimize the mean square error (MSE) between the received 

signal Y and the desired signal X by multiplying the 

received signal by an optimal weight vector 

,             1
H

k k k r
k N  X Yw . (6) 

The weight vector is given by 

1

Y Y Y X



 R Rw , (7) 

where RYY is the auto covariance matrix of the received 

signal and RYX is the cross covariance matrix of the desired 

signal and the received signal: 

Y Y X X N N

ˆ ˆ[ ]
H H

E  R Y Y H R H R  (8) 

Y X X X

ˆ H

R R H  (9) 

where
2

N N N
[ ] . 

H

E  R N N I and
2

X X X
[ ] . 

H

E  R X X I . 

The MMSE receiver is optimal in the sense of minimizing 

the mean squared error. In [5], an improved MMSE receiver 

based on equalization in the fractional Fourier domain was 

proposed. It was shown that the MMSE receiver in the 

optimum fractional Fourier domain outperforms the 

conventional MMSE receiver in time domain.  The received 

signal and the desired signal are converted to the ‘a
th

’ 

fractional domain by using fractional Fourier transform 

(FRFT) and the equalization process is performed in that 

domain. After equalization the output is converted back to 

the original domain by inverse fractional Fourier transform 

(IFRFT) and the MSE of the output and the desired signal is 

calculated. The domain in which the MSE is minimum is 

selected as the optimum domain. For a detailed description 

of FRFT and its application to wireless communication, refer 

to [8]–[12]. A comparison of the conventional MMSE 

receiver and the FRFT based MMSE receiver for 2 transmit 

and 2 receive antennas without any forward error correction 

(FEC) and assuming perfect CSI is shown below. 
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Fig. 1.  BER comparison of time domain and FRFT domain MMSE 

receiver for 2x2 MIMO system. 

Although the FRFT based MMSE outperforms the 

conventional MMSE receiver in terms of bit error rate 

(BER) [8], it assumes perfect channel knowledge at the 

receiver which in practice is never known apriori. Therefore, 

for practical applications, some kind of estimation technique 

needs to be used. In this paper, we propose a novel joint 

channel estimation and equalization method in the fractional 
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Fourier domain. 

IV. CHANNEL ESTIMATION AND EQUALIZATION IN 

FRACTIONAL DOMAIN 

The transmitted and received vectors X and Y are 

transformed from time domain to the fractional Fourier 

domain by using the transformation kernel 
a

K  or 


K  [10] 

{ } ,  { }
a a

a a
F F Y Y X X , (10) 

where 
a

F  denotes the a
th

 order FRFT:  

,

.

a a

a a

a T d

a T d

 


 

Y Y Y

X X X
 (11) 

In the training phase we consider 
a

T
X and 

a
T

Y and during 

the information phase we consider 
a

d
X  and 

a
d

Y . The 

channel estimation in this work is done using the MMSE 

method given by eq. (4). Channel estimation in the a
th

 

domain is given by 

 
1

2ˆ
a a a a

H H

a T T n T TN t




 IH X X X Y , (12) 

where ˆ
a

H  is the channel gain estimate in the ath fractional 

domain. The estimate obtained in the a
th

 domain is used for 

equalization using the Wiener filtering technique [4], [13]. 

The optimal Wiener solution in the fractional domain is 

given by 

1

d d d da a a a
a




Y Y Y Y
w R R , (13) 

where 
a

w  is the weight vector in the ath domain, 
a a

Y Y
R  is 

the auto covariance of the vector Y in the ath domain and 

d da a
Y Y

R  is the cross covariance of Y and X in the a
th

 

domain. 
d da a

Y Y
R  and 

d da a
XY

R  are given by: 

ˆ H

a
d d d da a a a


X X XY

HR R , (14) 

ˆ ˆ
d d d d d da a a a a a

H

a a
 

Y X XY N N
H HR R R , (15) 

where 
a

d
N  denotes the noise in the a

th
 domain during the 

data transmission phase. The Wiener solution given in eq. 

(13) reduces to time domain wiener solution for a=0 and 

frequency domain wiener solution for a=1. The recovered 

signal is described by 

 ( ) ( )
X̂ ,      1

a

a H

k a k d k r
F k N



  Yw , (16) 

where 
a

F


 is the inverse fractional Fourier transform.. The 

optimum value of ‘a’ is simply found by calculating the 

mean squared error (MSE) for sufficiently closely spaced 

discrete values of ‘a’  [ 1, 1]   and choosing the one 

which minimizes the MSE. The MSE gives the difference 

between the desired and estimated signal and can be 

calculated by 

  
2

( )
a

a

a H

a d
M S E E F



 X Yw w . (17) 

Once the optimum value of ‘a’ is calculated, it can be 

used for arbitrary many realizations of that signal and noise 

statistics. The optimum domain only needs to be recalculated 

when the statistics of the signal and noise change. After 

processing the signal in the fractional domain and converting 

it back to time domain, it is demodulated and decoded to 

obtain the original transmitted data. 

Computational Complexity of FRFT. For time-invariant 

degradation models and stationary signals and noise, the 

classical Fourier domain Wiener filter can be implemented 

in 2
( lo g )O N N

 time, where N is the temporal length of the 

signal. The filtering process in fractional Fourier domain, 

which enables significant improvement in the estimation and 

equalization process, can also be implemented in 

2
( lo g )O N N

 time. Thus, an improved performance is 

achieved at no additional cost [9], [11], [14]. 

V. SIMULTATION DETAILS 

Total number of bits is 10
5
. Block length (L) is taken to 

50 and the total number of blocks is 2000. The first part of 

the block consists of training symbols and the second part 

consists of data symbols which are encoded by irregular 

LDPC coes of rate 1/2. For simplicity and loss of generality, 

we consider QPSK modulation. The channel is assumed to 

obey the block fading law in which the channel remains 

constant over the full duration of a transmission block and 

changes completely and independently for the next block. 

The fading is considered to be frequency flat and is assumed 

to follow Rayleigh distribution. Both the fading channel and 

noise are comprised of i.i.d complex Gaussian random 

variables CN(0,1). The value of FRFT order ‘a’ is varied 

from -1 to +1 with a step size of 0.1. A total of 21 values of 

‘a’ are investigated, selecting the one which gives the 

minimum MSE. It can be observed from the results that the 

proposed receiver clearly outperforms the existing 

estimation and equalization technique. The MSE vs. ‘a’ 

graph shows the optimum value of ‘a’ to be -0.4 at SNR=10 

dB. The analysis in this paper is done for Nt=Nr=2 but it is 

applicable to higher antenna configurations without loss of 

generality. 

It can be seen from Fig. 2 and 3 that the proposed receiver 

has better error performance (in terms of BER and MSE) 

than the existing receiver.  

Table I gives the comparison of the two receivers at a 

BER of 10
-3

 and it is seen that the proposed receiver gives 

an SNR advtantage of 1.67 dB over the existing receiver. 

TABLE I. SNR COMPARISON AT A BER OF 10-3. 

FRFT domain estimation and equalization 16.43 dB 

Time domain estimation and equalization 18.10 dB 

SNR Advantage 1.67 dB 
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Fig. 2.  BER comparison of the existing and the proposed technique for 

2x2 LDPC coded MIMO system. 
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Fig. 3.  MSE vs. SNR comparison of existing and proposed receiver for 

2x2 MIMO system. 

VI. CONCLUSIONS 

A novel FRFT based joint channel estimation and 

equalization technique has been proposed in this paper. 

From the results it is clearly seen that the proposed 

technique outperforms the existing technique. The signal 

which appears scattered in time domain is filtered in the 

optimum domain where it appears to be compact. Moreover, 

this performance improvement comes at no additional cost 

since the fractional Fourier transform has an O (N log2 N) 

algorithm for time invariant degradation models which is the 

same as classical Fourier transform. The further study 

prospects involve the validation of the technique in the 

presence of correlated channels.  
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